Abstract:
Un aparato para suministrar una tensión a un circuito transmisor, procesando el circuito una señal para su transmisión por un canal de comunicaciones, comprendiendo el circuito transmisor un mezclador (104.1, 104.2) para trasladar una señal a una frecuencia más elevada, comprendiendo además el circuito transmisor un amplificador (104.5), comprendiendo el aparato: un módulo (202) de generación de tensión para generar una tensión (202a) de suministro para el circuito transmisor, estando la tensión de suministro a un primer nivel durante una primera fase, y a un segundo nivel durante una segunda fase, siendo el primer nivel más alto que el segundo nivel, siendo suministrada la tensión (202a) de suministro al mezclador del circuito transmisor.
Abstract:
Switches with variable control voltages and having improved reliability and performance are described. In an exemplary design, an apparatus includes a switch, a peak voltage detector, and a control voltage generator. The switch may be implemented with stacked transistors. The peak voltage detector detects a peak voltage of an input signal provided to the switch. In an exemplary design, the control voltage generator generates a variable control voltage to turn off the switch based on the detected peak voltage. In another exemplary design, the control voltage generator generates a variable control voltage to turn on the switch based on the detected peak voltage. In yet another exemplary design, the control voltage generator generates a control voltage to turn on the switch and attenuate the input signal when the peak voltage exceeds a high threshold.
Abstract:
Level shifters and high voltage logic circuits implemented with MOS transistors having a low breakdown voltage relative to the voltage swing of the input and output signals are described. In an exemplary design, a level shifter (102) includes a driver circuit (110) and a latch (140). The driver circuit receives an input signal (Vinp, Vinn) having a first voltage range and provides a drive signal (Vdrp, Vdrn) having a second voltage range. The first and second voltage ranges may cover positive and negative voltages or different ranges of positive voltages. The latch receives the drive signal and provides an output signal (Voutp, Voutn) having the second voltage range. The driver circuit may generate a control signal (Vctrip, Vctrin) having a full voltage range based on the input signal and may then generate the drive signal based on the control signal. The level shifter may be used to implement a high voltage logic circuit.
Abstract:
A cascode amplifier (300) with protection circuitry is described. In one exemplary design, the amplifier includes multiple branches coupled in parallel (310a, 310b, 310k), with at least one branch being switchable between "on" and "off states. Each switchable branch includes a gain transistor (312) coupled to a cascode transistor (314). The gain transistor (312) amplifies an input signal and provides an amplified signal in the on state and does not amplify the input signal in the off state. The cascode transistor (314) buffers the amplified signal and provides an output signal in the on state. The output signal swing may be split between the gain transistor (312) and the cascode transistor (314) in both the on and off states with the protection circuitry. Each transistor may then observe a fraction of the voltage swing. The voltage splitting in the off state may be achieved by floating the gain transistor (312) and shorting the gate and source of the cascode transistor (314).
Abstract:
A high linear fast peak detector having a variable bias current and/or a variable bias voltage is described. In an exemplary design, the peak detector includes a transistor, a variable current source, a capacitor, and a feedback circuit. The transistor receives the input signal and provides a source current. The variable current source receives the input signal, provides high bias current when the input signal is low, and provides low bias current when the input signal is high. The capacitor is charged by the source current when the input signal is high and is discharged by the high bias current when the input signal is low. The feedback circuit receives a detected signal from the capacitor and provides higher bias voltage for the transistor when the input signal is high, which results in higher source current from the transistor.
Abstract:
A circuit which selects a supply voltage from a plurality of voltage supplies is presented. The circuit includes a first transistor configured to select a first voltage supply, a second transistor configured to select a second voltage supply, a first parasitic current inhibitor coupled the first transistor, the first voltage supply, and the second voltage supply, where the first parasitic current inhibitor automatically utilizes the voltage supply providing the highest voltage for preventing a substrate current from flowing through a bulk node of the first transistor, and a second parasitic current inhibitor coupled the second transistor, the first voltage supply, and the second voltage supply, where the second parasitic current inhibitor automatically utilizes the voltage supply providing the highest voltage for preventing a substrate current from flowing through a bulk node of the second transistor.
Abstract:
High voltage logic circuits that can handle digital input and output signals having a larger voltage range are described. In an exemplary design, a high voltage logic circuit includes an input stage, a second stage, and an output stage. The input stage receives at least one input signal and provides (i) at least one first intermediate signal having a first voltage range and (ii) at least one second intermediate signal having a second voltage range. The second stage receives and processes the first and second intermediate signals based on a logic function and provides (i) a first drive signal having the first voltage range and (ii) a second drive signal having the second voltage range. The output stage receives the first and second drive signals and provides an output signal having a third voltage range, which may be larger than each of the first and second voltage ranges.
Abstract:
An apparatus for implementing phase rotation at baseband frequency for transmit diversity may include a primary transmit signal path and a diversity transmit signal path. Both the primary transmit signal path and the diversity transmit signal path may receive a primary transmit signal. A signal selector within the diversity transmit signal path may perform phase rotation with respect to the primary transmit signal while the primary transmit signal is at a baseband frequency, thereby producing a diversity transmit signal.