Abstract:
Methods and apparatus for easily and quickly returning to a first radio access technology (RAT) network when handover to a second RAT network is cancelled are provided. The methods and apparatus may involve a mobile station (MS) entering idle mode before handover to the second RAT network is completed and requesting a serving base station (BS) to retain MS service and operational information, as well as service flow state information. In this manner, should handover to the second RAT network be cancelled before completion, a re-entry to the first RAT network may be expeditiously performed using the retained MS information.
Abstract:
Methods and systems for utilizing a multicast / broadcast connection identifier (CID) scheduling message in an orthogonal frequency-division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) frame in an effort to bypass at least a portion of the Media Access Control (MAC) protocol data unit (PDU) parsing of the frame are provided. By bypassing at least a portion of the MAC PDU parsing of the OFDM/OFDMA frame (which may be in accordance with one or more standards of the IEEE 802.16 family of standards), a particular user terminal need not spend a lot of overhead in the CID filtering process, determining which MAC PDUs are intended to be processed by the MAC of that particular user terminal. Furthermore, for certain embodiments, a user terminal may power down related circuitry during the terminal's bypassing time period(s) of the OFDM/OFDMA frame in an effort to save power.
Abstract:
Methods and apparatus for communicating with a multimode mobile station supporting multiple radio access technologies (RATs) are provided. For certain embodiments, when a paging request (824) is received via a first RAT network, paging requests may be broadcast on all RATs supported by the mobile device. As a result, the mobile device may receive the paging request regardless of which RAT (820) it used for a current network connection.
Abstract:
A method for efficiently performing ranging in a wireless communication network may be implemented by a mobile station. The method may include sending a ranging code to a base station. The method may also include receiving a ranging response message from the base station. The method may also include determining whether a ranging failure condition is satisfied. The ranging failure condition may relate to something other than a duration of time. The method may further include re-sending the ranging code to the base station if the ranging failure condition is satisfied.
Abstract:
Methods and apparatuses are provided for configuring MIMO resources at a device operating in a sleep mode of a wireless network. The device can use at least some of the resources for other purposes such as scanning neighbor base stations acquiring system parameters of the wireless network or other networks etc. based in part on requirements of a current interval of the sleep mode. In an available interval a serving base station may attempt to communicate with the device and thus the device can keep at least one receiver chain tuned to the serving base station while assigning other resources to communicate with other base stations. In an unavailable interval the device can assign all resources for communicating with the other base stations.
Abstract:
Methods and apparatus for easily and quickly returning to a first radio access technology (RAT) network when handover to a second RAT network is cancelled are provided. The methods and apparatus may involve a mobile station (MS) entering idle mode before handover to the second RAT network is completed and requesting a serving base station (BS) to retain MS service and operational information, as well as service flow state information. In this manner, should handover to the second RAT network be cancelled before completion, a re-entry to the first RAT network may be expeditiously performed using the retained MS information.
Abstract:
Certain embodiments provide a method for managing updates to type-length-value (TLV) parameters used in a mobile station. The method generally includes generating a TLV bitmap having a plurality of bits to indicate whether or not updates exist to a corresponding plurality of TLV parameters, generating one or more client module registration bitmaps to indicate a subset of the TLV parameters utilized by a corresponding one or more client modules running on the mobile station, updating the TLV bitmap to indicate one or more TLV parameters modified by one or more MAC management messages, identifying one or more client modules that utilize the one or more TLV parameters modified by the one or more MAC management messages, as indicated by the client module registration bitmaps, and notifying the identified client modules of the modified TLV parameters.
Abstract:
Methods and apparatus for expressing two or more extended information elements (IEs) of a MAP message using a single Extended or Extended-2 Downlink Interval Usage Code (DIUC) or Uplink Interval Usage Code (UIUC) in an orthogonal frequency-division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) frame are provided. This enhancement, called extensible Extended IE mapping, allows the WiMAX network to include more IEs into the DL-MAP and UL-MAP messages as the IEEE 802.16 family of standards evolves. Without this enhancement, all of the new IEs may most likely have to be included in the data bursts, and a user terminal (e.g., a mobile station) cannot decode these data-burst IEs unless the user terminal receives the Downlink Channel Descriptor (DCD) message(s).