Abstract:
PROBLEM TO BE SOLVED: To provide techniques for video-encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of a video stream while preserving compression efficiency.SOLUTION: Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network abstraction layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and apparatus to improve error resilience by generating a directory including header information. SOLUTION: This invention relates to a method and an apparatus to improve error resilience in processing a multimedia bitstream. According to the method 300, a directory of header information is generated for a multimedia bitstream (S315). Directory information includes packet header information associated with the multimedia bitstream. The directory information may be transmitted to a receiver along with the multimedia bitstream (S320). A receiver of the multimedia bitstream and the directory can utilize the header information to identify and locate packets within the received bitstream and subsequent to erroneous data. By identifying and locating packets that may otherwise be discarded, the receiver may be able to improve error recovery and decoding of multimedia data. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
Techniques for video encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of the video stream while preserving compression efficiency is provided. Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network adaptation layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.
Abstract:
Techniques for video encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of the video stream while preserving compression efficiency is provided. Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network adaptation layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.
Abstract:
Techniques for video encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of the video stream while preserving compression efficiency is provided. Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network adaptation layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.
Abstract:
Video images in, e.g., a multimedia stream are scanned prior to compression for transmission to recognize symbols, such as graphics symbols and alpha-numeric characters. The types, positions, sizes, etc. of the symbols are recorded to render symbol information, and then the images are compressed with or without compressing the symbols, which may be removed from the images prior to compression if desired. The compressed video and symbol information are sent to a receiver, which decompresses the video, optionally transforms the symbols, and then inserts the symbols where indicated by the symbol information.
Abstract:
A method and apparatus for accurately determining the operating characteristics or impact of nonlinear effects on devices or communication systems transferring orthogonally coded spread-spectrum communication signals. A Walsh Power Ratio, is used to more accurately determine system response. This information can be used by power control loops in controlling or adjusting the operation of nonlinear elements or stages such as high power amplifiers in orthogonal CDMA communication systems to provide improved system response. The information can also be employed in assigning channels to systems users, and to proceed with physical changes to system hardware. The measurements used to formulate the WPR can be made to individual components or to entire systems by injecting communication signals in multiple channels containing data, and leaving at least one empty channel. The received power per channel on the output side of the system or device is then measured. A ratio of power density for the empty to the active channels is then formed. The determination of WPR for a system or components can be realized during periods of operation through periodic transfer of test signals either at allocated times or by interleaving among existing traffic signals in the system.
Abstract:
Techniques for video encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of the video stream while preserving compression efficiency is provided. Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network adaptation layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.
Abstract:
Techniques for video encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of the video stream while preserving compression efficiency is provided. Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network adaptation layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.