Abstract:
Aspects generally relate to reducing delay, or phase jitter, in high speed signals transmission. Variations in power supply to ground potential changes the amount of delay introduced by transmit circuity into the signal being transmitted, resulting in jitter, or phase noise, in the transmitted signal. To reduce phase jitter, or phase noise, aspects disclosed include a variable impedance circuit coupled to the signal distribution network, the impedance level of the variable impedance circuit is adjusted in response to variation in the supply to ground potential, such that the delay introduced by the impedance compensates for changes in the delay due to variations in supply to ground potential, resulting in substantially constant delay.
Abstract:
A medical system is provided. The medical system includes a guidewire configured to guide a catheter to a target location within a body, the guidewire including a sensor configured to collect sensor data indicative of a location within the body, and an electrical conductor configured to conduct electrical signals representing the sensor data. The medical system further includes a wireless transmitter and a first antenna electrically coupled with the sensor via the electrical conductor and configured to: receive the electrical signals representing the sensor data; generate, from the electrical signals, first wireless signals representing the sensor data; and transmit, via the first antenna, first wireless signals.
Abstract:
An example method for use with a LIDAR system includes assigning a firing time of a laser included in the LIDAR system. The assignment of the firing time includes: (i) receiving a universal clock signal at the LIDAR system, where the universal clock signal common to one or more other LIDAR systems; (ii) synchronizing a system clock of the LIDAR system to the universal clock signal to generate a synchronized clock signal; and determining the firing time based on the synchronized clock signal to reduce interference with the one or more other LIDAR systems. The method also includes firing the laser at the firing time.
Abstract:
Techniques described herein provide for the detection and capture of neural signals in a manner that compresses data sent from electrodes to controller by several orders of magnitude over current techniques. In particular, embodiments include detecting a threshold amplitude and/or slope of a detected neural signal, and capturing the detected neural signal once these thresholds are met. A threshold timing detector may be implemented as well. Additionally, these thresholds may be configurable to accommodate various factors, such as electrode placement, sensitivity, etc.