Abstract:
A common-mode feedback module (310) is disclosed for controlling feedback in an amplifier (400), such as a multi-stage amplifier. The common-mode feedback module (310) may include a feedback input stage (415), a cascode stage (420), and a feedback output stage (430). The common-mode feedback module (310) may provide feedback, such as negative feedback to the amplifier (400) to extend a bandwidth of a frequency response and/or increase stability.
Abstract:
The present disclosure describes aspects of a fast settling peak detector. In some aspects, a peak detector circuit includes a first transistor having a gate coupled to an input of the circuit at which a signal is received and a drain coupled to a source of a second transistor. Current may flow in the first and second transistors responsive to the signal. The circuit also includes a third transistor having a gate coupled, via a signal-inverting component, to the input of the circuit and a drain coupled to a source of a fourth transistor. Through an inversion of the signal, other current flowing in the third and fourth transistor can reduce or cancel a frequency component of the current in the first and second transistors. In some cases, this precludes a need to filter the frequency component from an output of the circuit.
Abstract:
Certain aspects of the present disclosure generally relate to using cross-coupled transistors for source degeneration of an amplification stage. For example, the amplification stage generally includes a differential amplifier comprising transistors, cross-coupled transistors coupled to the differential amplifier, and an impedance coupled between drains of the cross-coupled transistors. In certain aspects, the differential amplifier comprises a push-pull amplifier, and the transistors of the push-pull amplifier comprise cascode-connected transistors.
Abstract:
An aspect includes a filtering method including operating a first filter to filter a first input signal to generate a first output signal; operating a second filter to filter a second input signal to generate a second output signal; and selectively coupling at least a portion of the second filter with the first filter to filter a third input signal to generate a third output signal. Another aspect includes a filtering method including operating switching devices to configure a filter with a first set of pole(s); filtering a first input signal to generate a first output signal with the filter configured with the first set of pole(s); operating the switching devices to configure the filter with a second set of poles; and filtering a second input signal to generate a second output signal with the filter configured with the second set of poles.
Abstract:
Certain aspects of the present disclosure generally relate to a differential amplifier implemented using a complementary metal-oxide-semiconductor (CMOS) structure. The differential amplifier generally includes a first pair of transistors and a second pair of transistors coupled to the first pair of transistors. The gates of the first pair of transistors and gates of the second pair of transistors may be coupled to respective differential input nodes of the differential amplifier, and drains of the first pair of transistors and drains of the second pair of transistors may be coupled to respective differential output nodes of the differential amplifier. In certain aspects, the differential amplifier may include a biasing transistor having a drain coupled to a source of a transistor of the first pair of transistors and having a gate coupled to a common-mode feedback (CMFB) path of the differential amplifier.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for calibrating a tunable active filter. One example apparatus is a filter circuit that generally includes a tunable active filter comprising at least one amplifier and a first feedback path coupled between an input and an output of the at least one amplifier, the first feedback path comprising at least one switch; and an amplitude limiter coupled to the tunable active filter and comprising at least one transistor disposed in a second feedback path coupled between the input and the output of the at least one amplifier.
Abstract:
An apparatus is disclosed for a harmonic rejection filter with transimpedance amplifiers. In an example aspect, the apparatus includes a harmonic rejection filter with at least three input nodes, at least one output node, a first transimpedance amplifier, a first set of transimpedance amplifiers, and a scaling current converter. The at least three input nodes include a first input node, a second input node, and a third input node. The at least one output node includes a first output node. The first transimpedance amplifier is coupled between the first input node and the first output node. The first set of transimpedance amplifiers include a second transimpedance amplifier coupled to the second input node and a third transimpedance amplifier coupled to the third input node. The scaling current converter is coupled between outputs associated with the first set of transimpedance amplifiers and an input of the first transimpedance amplifier.
Abstract:
A filter circuit may include a first path having a first complex baseband filter. The circuit may further include a second path having a second complex baseband filter. The circuit may further include a combiner coupled to an output of the first complex baseband filter and an output of the second complex baseband filter. Aspects of the present disclosure provide a radio frequency (RF) baseband filter for facilitating carrier aggregation (CA), such as non-contiguous CA. In some aspects, an RF baseband filter may independently adjust a gain of different bandwidth combinations of different frequencies while filtering out a jammer. Advantages of the RF baseband filter include significant reduction in current consumption, as compared to using two separate downlink paths (DLPs), and flexibility for independent gain control.
Abstract:
A class AB amplifier (400) may include an input stage (410, 420), a first folded cascode stage (430), a second folded cascode stage (440), and a class AB output stage (340). In some embodiments, the class AB output stage (340)may provide differential output signals (345). The common-mode voltage of the differential output signals may be controlled via a correction signal (362) coupled to a selected folded cascode stage (440). The correction signal (362) may control the common-mode voltage of the differential output signals by altering bias currents within the selected folded cascode stage (440). The other cascode stage (430) may include bias currents controlled by relatively fixed bias voltages (435).