Abstract:
In one implementation, a wireless communication device includes a first transceiver configured to generate a transmit signal and a band pass filter (BPF) select circuit configured to filter the transmit signal by a one of a first BPF with a relatively high-frequency passband or a second BPF with a relatively low-frequency passband. The wireless communication device includes a second transceiver configured to receive a received signal filtered by the other one of the first or second BPF. Having the transmit and received signals filtered by two different passband filters improves the isolation between the transmitter and receiver. Another implementation configures the first transceiver to include its own set of first and second BPFs, and the second transceiver to also include its own first and second BPFs.
Abstract:
A method of wireless communication performed by a wireless device includes determining whether a 4.9 GHz band is in use by a cellular wireless wide area network (WWAN). The method also includes operating a wireless local area network (WLAN) access point on an unlicensed spectrum, e.g., (UNII) -2A and/or UNII-1, when the 4.9 GHz band is not in use by the cellular WWAN.
Abstract:
Apparatuses and methods to distinguish proprietary, non-floating and floating chargers for regulating charging current are disclosed. In one aspect, a charger detection circuit is provided in a portable electronic device. The charger detection circuit is configured to detect whether a connected Universal Serial Bus (USB) charger is compliant with a USB battery charging specification. If the connected USB charger is non-compliant with the USB battery charging specification, the charger detection circuit is configured to further detect if the non-complaint USB charger is a non-compliant floating USB charger or a non-compliant proprietary USB charger. If the connected USB charger is determined to be a non-compliant proprietary USB charger, the portable electronic device can be configured to draw up to a maximum charging current according to the USB battery charging specification.
Abstract:
A method of triggering a desired operating mode in a universal serial bus (USB)-compatible client device is provided. A USB-compatible client device detects that it has been coupled to a USB-compatible host device via a USB bus. The USBcompatible client device attempts to pull a data line of the USB bus high. The USBcompatible client device then ascertains that the data line remains pulled low, thereby indicating that the USB-compatible client device should enter a first mode of operation. The USB-compatible client device operates according to the first mode of operation.
Abstract:
Apparatuses and methods to distinguish proprietary, non-floating and floating chargers for regulating charging current are disclosed. In one aspect, a charger detection circuit is provided in a portable electronic device. The charger detection circuit is configured to detect whether a connected Universal Serial Bus (USB) charger is compliant with a USB battery charging specification. If the connected USB charger is non-compliant with the USB battery charging specification, the charger detection circuit is configured to further detect if the non-complaint USB charger is a non-compliant floating USB charger or a non-compliant proprietary USB charger. If the connected USB charger is determined to be a non-compliant proprietary USB charger, the portable electronic device can be configured to draw up to a maximum charging current according to the USB battery charging specification.
Abstract:
Apparatuses, methods, and systems for enabling higher current charging of Universal Serial Bus (USB) Specification Revision 2.0 (USB 2.0) portable electronic devices from USB 3.x hosts are disclosed. In one aspect, a USB 2.0 controller is provided in a USB 2.0 portable device. A USB 3.x controller is provided in a USB 3.x host. The USB 2.0 controller is configured to draw a higher charging current than specified in USB 2.0 for the USB 2.0 portable device over a USB 2.0 cable. In order to draw the higher charging current without violating USB 2.0, the USB 2.0 controller is configured to use one or more reserved elements in an existing USB 2.0 descriptor(s) or bitmap(s) to indicate a higher charging current request from the USB 2.0 controller.
Abstract:
Electronic devices are adapted to facilitate detection of a type of USB charger to which an electronic device is connected. According to one example, an electronic device can apply a current source to a data line of a USB plug coupled to a USB port. A determination can be made whether the data line has gone to a LOW state or remained at a HIGH state after a predetermined period of time. If the data line has gone to a LOW state, the USB port may be identified as a downstream port, such as a standard downstream port (SDP) or a charging downstream port (CDP). If the data line has remained at the HIGH state, the USB port may be identified as a dedicated charging port (DCP), no matter if it is compliant or non-compliant with the BC 1.2 spec. Other aspects, embodiments, and features are also included.
Abstract:
Electronic devices are adapted to facilitate detection of a type of USB charger to which an electronic device is connected. According to one example, an electronic device can apply a current source to a data line of a USB plug coupled to a USB port. A determination can be made whether the data line has gone to a LOW state or remained at a HIGH state after a predetermined period of time. If the data line has gone to a LOW state, the USB port may be identified as a downstream port, such as a standard downstream port (SDP) or a charging downstream port (CDP). If the data line has remained at the HIGH state, the USB port may be identified as a dedicated charging port (DCP), no matter if it is compliant or non-compliant with the BC 1.2 spec. Other aspects, embodiments, and features are also included.