Abstract:
Aspects described herein relate to using antenna-switched diversity (ASDIV) in wireless communications. A serving node can be communicated with using a serving radio access technology (RAT) and based on an ASDIV configuration, wherein the ASDIV configuration defines an antenna switching configuration including a state of one or more switches in an ASDIV switch group for switching between one or more antennas for the communicating based on sensing one or more parameters of the communicating. It can be determined whether a target RAT supports operating using a same ASDIV switch group as the serving RAT. A target node can be communicated with using the target RAT and based on the ASDIV configuration where the target RAT operates using the same ASDIV switch group as the serving RAT.
Abstract:
Systems and techniques are disclosed relating to telecommunications which include transmitting a plurality of data groups to a receiver at a first power level, retransmitting a first one of the data groups to the receiver at a second power level lower than the first power level, providing feedback from the receiver relating to the retransmission of the first one of the data groups, and retransmitting a second one of the data groups to the receiver at a third power level different from the second power level, the third power level being a function of the feedback.
Abstract:
In a wireless communication system (10) a method for power control in a mobile unit (14, 16), wherein a variable size step is used to adjust the transmit power. The method compares a current power control signal to a previous one (52), and incrementally changing the step size for no change (64, 70). The adjusted step size is compared to maximum and minimum values (69, 74) to maintain a predetermined step size range. In one embodiment, a mobile unit (22) includes a memory storage device (32, 34) and a comparator (36) for storing the power control signals and comparing them.
Abstract:
A method and an apparatus for recovery of particular bits in a frame are disclosed. An origination station forms a frame structure with groups of information bits of different importance. All the information bits are then protected by an outer quality metric. Additionally, the groups of more important information bits are further protected by an inner quality metric; each group having a corresponding quality metric. The frame is then transmitted to a destination station. The destination station decodes the received frame and decides, first in accordance with the outer quality metric, whether the frame has been correctly received, or whether the frame is erased. If the frame has been declared erased, the destination station attempts to recover the groups of more important information bits in accordance with the corresponding inner quality metrics.
Abstract:
A method and an apparatus for recovery of particular bits in a frame are disclosed. An origination station forms a frame structure with groups of information bits of different importance. All the information bits are then protected by an outer quality metric. Additionally, the groups of more important information bits are further protected by an inner quality metric; each group having a corresponding quality metric. The frame is then transmitted to a destination station. The destination station decodes the received frame and decides, first in accordance with the outer quality metric, whether the frame has been correctly received, or whether the frame is erased. If the frame has been declared erased, the destination station attempts to recover the groups of more important information bits in accordance with the corresponding inner quality metrics.
Abstract:
Methods and apparatus are presented for scheduling data packet transmissions during optimal channel conditions. In one method, data packet retransmissions are scheduled for transmission during favorable channel conditions when the target remote station is moving slowly, but are scheduled for periodic transmissions when the target is moving moderately or fast. In another method, long delays for retransmissions in a channel sensitive timing scheme are eliminated. In other methods, a combination of periodic and aperiodic retransmissions are used to achieve the desired frame error rate.
Abstract:
Systems and techniques are disclosed relating to telecommunications which include transmitting a plurality of data groups to a receiver at a first power level, retransmitting a first one of the data groups to the receiver at a second power level lower than the first power level, providing feedback from the receiver relating to the retransmission of the first one of the data groups, and retransmitting a second one of the data groups to the receiver at a third power level different from the second power level, the third power level being a function of the feedback. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
In a wireless communication system (10) a method for power control in a mobile unit (14, 16), wherein a variable size step is used to adjust the transmit power. The method compares a current power control signal to a previous one (52), and incrementally changing the step size for no change (64, 70). The adjusted step size is compared to maximum and minimum values (69, 74) to maintain a predetermined step size range. In one embodiment, a mobile unit (22) includes a memory storage device (32, 34) and a comparator (36) for storing the power control signals and comparing them.
Abstract:
The present invention is a novel and improved method and system for communicating a frame of information according to a discontinuous transmit format. In particular, the present invention describes a method of transmitting eighth rate speech or data frames employing transmit gating and energy scaling which simultaneously reduces the battery usage of a variable rate wireless communication device (50), increases the capacity of the reverse link and provides reliable communication of the eighth rate frames. In the present invention, four methods are presented for transmitting an eighth rate data frame in which half of the frame is gated out and the remaining data is transmitted at nominal transmission energy to accomplish the aforementioned goals.