Abstract:
The present invention provides for a method and structure for forming three-dimensionally routed dielectric wires between discrete points on the two or more parallel circuit planes. The wires may be freely routed in three-dimensional space as to create the most efficient routing between the two arbitrarily defined points on the two or more parallel circuit planes. Metalizing the outer surfaces of these three dimensional dielectric wires electrically coupling the discrete wires to their respective discrete contact points. Two or more of these wires may be in intimate contact to one another electrically coupling to each other as well as to two or more discrete contact pads. These electrically coupled contact pads may be on opposite sides or on the same side of the structure and the formed metalized wires may originate on one side and terminate on the other or originate and terminate from the same side
Abstract:
The present invention describes essentially three different embodiments for the implementation of low impedance (over frequency) power delivery to a die. Such low impedance to a high frequency allows the die to operate at package-level speed, thus reducing yield loss at the packaging level. Each embodiment addresses a slightly different aspect of the overall wafer probe application, lit each embodiment, however, the critical improvement of this disclosure is the location of the passive components used, for supply filtering/ decoupling relative to prior art. All three embodiments, require a method to embed the passive components in close proximity to the pitch translation substrate or physically in the pitch translation substrate.
Abstract:
The present invention describes essentially three different embodiments for the implementation of low impedance (over frequency) power delivery to a die. Such low impedance to a high frequency allows the die to operate at package-level speed, thus reducing yield loss at the packaging level. Each embodiment addresses a slightly different aspect of the overall wafer probe application, lit each embodiment, however, the critical improvement of this disclosure is the location of the passive components used, for supply filtering/ decoupling relative to prior art. All three embodiments, require a method to embed the passive components in close proximity to the pitch translation substrate or physically in the pitch translation substrate.
Abstract:
The present invention provides for a method and structure for forming three-dimensionally routed dielectric wires between discrete points on the two or more parallel circuit planes. The wires may be freely routed in three-dimensional space as to create the most efficient routing between the two arbitrarily defined points on the two or more parallel circuit planes. Metalizing the outer surfaces of these three dimensional dielectric wires electrically coupling the discrete wires to their respective discrete contact points. Two or more of these wires may be in intimate contact to one another electrically coupling to each other as well as to two or more discrete contact pads. These electrically coupled contact pads may be on opposite sides or on the same side of the structure and the formed metalized wires may originate on one side and terminate on the other or originate and terminate from the same side