Abstract:
A novel fluid delivery system includes a mounting panel, where the mounting panel includes channels that define the flow of fluid between any flow-control components mounted on the mounting panel. The mounting panel comprises a top plate and a bottom plate, and the channels are carved out of the underside of the top plate and are enclosed by the bottom plate. In a complex fluid delivery system having many fluid channels, the mounting panel may include one or more interior panels with additional channels carved out of the interior plates to accommodate all routing paths. The channels run in two or more directions to connect two or more gas/channel sticks together.
Abstract:
A method of attaching a micromechanical fluid control device (62) to a substrate (64) includes the steps of forming a first ring of a first adhesiv e (70) around an aperture (66) defined between a micromechanical fluid control device and a substrate. The first adhesive forms a first interface between t he micromechanical fluid control device and the substrate that is clean and corrosion resistant. A second ring of a second adhesive (72) is applied arou nd the first ring. The second adhesive forms a second interface between the micromechanical fluid control device and the substrate that is hermetic.
Abstract:
An apparatus for mounting micromechanical fluid control components includes a manifold interface plate adaptable for connection to a manifold substrate oriented in a horizontal plane. The manifold interface plate receives mounting stress forces from the manifold substrate along the horizontal plane. An orthogonal component plate is connected to the manifold interface plate in a vertical plane with respect to the horizontal plane of the manifold substrate. The orthogonal component plate includes an orthogonal mounting surface with a micromechanical fluid control component mounted on it. The position of the micromechanical fluid control component on the orthogonal mounting surface substantially isolates the micromechanical fluid control component from the mounting stress forces.
Abstract:
A method of attaching a micromechanical fluid control device to a substrate includes the steps of forming a first ring of a first adhesive around an aperture defined between a micromechanical fluid control device and a substrate. The first adhesive forms a first interface between the micromechanical fluid control device and the substrate that is clean and corrosion resistant. A second ring of a second adhesive is applied around the first ring. The second adhesive forms a second interface between the micromechanical fluid control device and the substrate that is hermetic.
Abstract:
A method of attaching a micromechanical fluid control device (62) to a substrate (64) includes the steps of forming a first ring of a first adhesive (70) around an aperture (66) defined between a micromechanical fluid control device and a substrate. The first adhesive forms a first interface between the micromechanical fluid control device and the substrate that is clean and corrosion resistant. A second ring of a second adhesive (72) is applied around the first ring. The second adhesive forms a second interface between the micromechanical fluid control device and the substrate that is hermetic.
Abstract:
A method of attaching a micromechanical fluid control device (62) to a substrate (64) includes the steps of forming a first ring of a first adhesive (70) around an aperture (66) defined between a micromechanical fluid control device and a substrate. The first adhesive forms a first interface between the micromechanical fluid control device and the substrate that is clean and corrosion resistant. A second ring of a second adhesive (72) is applied around the first ring. The second adhesive forms a second interface between the micromechanical fluid control device and the substrate that is hermetic.