Abstract:
The data processing system has: a plurality of hardware resources each having at least one standby mode; a control part for controlling execution of a task achieved by using, of the plurality of hardware resources, predetermined ones, and a working status of each hardware resource; and a power-source part for controlling supply of a power source to each hardware resource. The control part performs the scheduling of a scheduled execution time of the task based on information for determining a timing of executing the task, and calculates a standby time of the hardware resource based on a result of the scheduling. The control part compares the standby time with a break-even time depending on the standby mode, thereby deciding whether or not to cause each hardware resource to transition to the standby mode.
Abstract:
An entry including multiple bits of unit cells each storing data bit is coupled to a match line. The match line is supplied with a charging current having a restricted current value smaller than a match line current flowing in a one-bit miss state in one entry, but larger than a match line current flowing in an all-bit match state in one entry. A precharge voltage level of a match line is restricted to a voltage level of half a power supply voltage or smaller. Power consumption in a search cycle of a content addressable memory can be reduced, and a search operation speed can be increased.
Abstract:
An entry including multiple bits of unit cells each storing data bit is coupled to a match line. The match line is supplied with a charging current having a restricted current value smaller than a match line current flowing in a one-bit miss state in one entry, but larger than a match line current flowing in an all-bit match state in one entry. A precharge voltage level of a match line is restricted to a voltage level of half a power supply voltage or smaller. Power consumption in a search cycle of a content addressable memory can be reduced, and a search operation speed can be increased.
Abstract:
An entry including multiple bits of unit cells each storing data bit is coupled to a match line. The match line is supplied with a charging current having a restricted current value smaller than a match line current flowing in a one-bit miss state in one entry, but larger than a match line current flowing in an all-bit match state in one entry. A precharge voltage level of a match line is restricted to a voltage level of half a power supply voltage or smaller. Power consumption in a search cycle of a content addressable memory can be reduced, and a search operation speed can be increased.
Abstract:
In order to perform easily power cutoff of a device configuring a data processing system and to improve the power reduction effect at standby, the data processing system is configured with a microcontroller, a memory IC including a nonvolatile RAM array, and a power supply unit capable of controlling the power supply to the microcontroller and the memory IC, separately. When a control signal to control read and write of data to the nonvolatile RAM array is at a high level, the memory IC is enabled read and write of data to the nonvolatile RAM array. When the control signal is at a low level, the memory IC is disenabled read and write of data to the nonvolatile RAM array. The microcontroller sets the control signal at a low level, when the memory IC is shifted to a standby state by the power supply unit.
Abstract:
The data processing system has: a plurality of hardware resources each having at least one standby mode; a control part for controlling execution of a task achieved by using, of the plurality of hardware resources, predetermined ones, and a working status of each hardware resource; and a power-source part for controlling supply of a power source to each hardware resource. The control part performs the scheduling of a scheduled execution time of the task based on information for determining a timing of executing the task, and calculates a standby time of the hardware resource based on a result of the scheduling. The control part compares the standby time with a break-even time depending on the standby mode, thereby deciding whether or not to cause each hardware resource to transition to the standby mode.