Abstract:
An optical metrology system (50) is provided with a data analysis method to determine the elastic moduli of optically transparent dielectric films (310) such as silicon dioxide, other carbon doped oxides over metal or semiconductor substrates. An index of refraction is measured by an ellipsometer and a wavelength of a laser beam is measured using a laser spectrometer. The angle of refraction is determined by directing a light pulse (325)focused onto a wafer surface, measuring a first set of x1, y1 and z1 coordinates (330) moving the wafer in the z direction, directing the light pulse (325) onto the wafer surface and measuring a second set of x2, y2 and z2 coordinates, using the coordinates to calculate an angle of incidence, calculating an angle of refraction from the calculated angle of incidence, obtaining a sound velocity v, from the calculated angle of refraction and using the determined sound velocity v, to calculate a bulk modulus. Hardware calibration and adjustments for the optical metrology system are also provided in order to minimize the variation of the results from tool to tool down to about 0.5 % or below.
Abstract:
A method for evaluating a manufacturing process is described. The method includes generating an optical pump beam pulse and directing the optical pump beam pulse to a surface of a sample. A probe pulse is generated and directed the probe pulse to the surface of the sample. A probe pulse response signal is detected. A change in the probe pulse varying in response to the acoustic signal forms the probe pulse response signal. An evaluation of one or more manufacturing process steps used to create the sample is made based upon the probe pulse response signal. Additionally the method may be used for process control of a CMP process. Apparatus are also described.
Abstract:
A method includes selecting one of performing ellipsometry or performing optical stress generation and detection. The method also includes, in response to selecting performing ellipsometry, applying at least one first control signal to a controllable retarder that modifies at least polarization of a light beam, and performing ellipsometry using the modified light beam. The method further includes, in response to selecting performing optical stress generation and detection, applying at least one second control signal to the controllable retarder, and performing optical stress generation and detection using the modified light beam. Apparatus and computer readable media are also disclosed.
Abstract:
A method for evaluating a manufacturing process is described. The method includes generating an optical pump beam pulse and directing the optical pump beam pulse to a surface of a sample. A probe pulse is generated and directed the probe pulse to the surface of the sample. A probe pulse response signal is detected. A change in the probe pulse varying in response to the acoustic signal forms the probe pulse response signal. An evaluation of one or more manufacturing process steps used to create the sample is made based upon the probe pulse response signal. Additionally the method may be used for process control of a CMP process. Apparatus are also described.
Abstract:
An optical metrology system (50) is provided with a data analysis method to determine the elastic moduli of optically transparent dielectric films (310) such as silicon dioxide, other carbon doped oxides over metal or semiconductor substrates. An index of refraction is measured by an ellipsometer and a wavelength of a laser beam is measured using a laser spectrometer. The angle of refraction is determined by directing a light pulse (325)focused onto a wafer surface, measuring a first set of x 1 , y 1 and z 1 coordinates (330) moving the wafer in the z direction, directing the light pulse (325) onto the wafer surface and measuring a second set of x 2 , y 2 and z 2 coordinates, using the coordinates to calculate an angle of incidence, calculating an angle of refraction from the calculated angle of incidence, obtaining a sound velocity v, from the calculated angle of refraction and using the determined sound velocity v, to calculate a bulk modulus. Hardware calibration and adjustments for the optical metrology system are also provided in order to minimize the variation of the results from tool to tool down to about 0.5 % or below.