Abstract:
Integrated packages incorporating multilayer ceramic circuit boards mounted on a metal support substrate can be used for temperature control by the metal support substrate. Various electronic components, as well as additional temperature control devices, can be connected to the circuit boards and to the metal support substrate to control or regulate the temperature of operation of the components. The integrated package can be hermetically sealed with a lid.
Abstract:
Patterned laminated green tape multilayer stacks (130) can be fired while maintaining the dimensions of the pattern (120) by applying, as by screen printing or spraying, a ceramic ink (108) over surface portions of the green tape stack. Complex patterns can be formed in the green tapes by punching openings (120) in one or more of the green tape stacks (100) before laminating them together.
Abstract:
Patterned laminated green tape multilayer stacks (130) can be fired while maintaining the dimensions of the pattern (120) by applying, as by screen printing or spraying, a ceramic ink (108) over surface portions of the green tape stack. Complex patterns can be formed in the green tapes by punching openings (120) in one or more of the green tape stacks (100) before laminating them together.
Abstract:
Patterned laminated green tape multilayer stacks (130) can be fired while maintaining the dimensions of the pattern (120) by applying, as by screen printing or spraying, a ceramic ink (108) over surface portions of the green tape stack. Complex patterns can be formed in the green tapes by punching openings (120) in one or more of the green tape stacks (100) before laminating them together.
Abstract:
Conductive via fill inks for green tapes to be stacked and bonded to a support substrate, the glass used for the green tape having a firing temperature from 850-950 °C, wherein the glass used for the via fill ink has a glass transition temperature that is higher than that of the glass used to make the green tape, preferably does not crystallize at the maximum firing temperature of the green tape and comprises from 30-75 percent by volume of the glass-conductive metal powder mixture of the via fill ink. These conductive via fill inks will not shrink until the green tape shrinkage has commenced during firing of the composite circuit board and they will flow slightly during firing, forming good bonds to the glass in the walls of the vias, thereby ensuring good integrity of the vias and good connections to the circuitry on the fired ceramic multilayer circuit board.
Abstract:
Electrical feedthroughs in printed circuit board support substrates (24) for use in making double sided ceramic multilayer printed circuit boards are made by insulating the feedthrough openings with a first layer of nickel oxide (22) and one or more layers of glass (26, 28), and then filling the remainder of the feedthroughs with a conductive metal via fill ink (30). After firing, the resultant structure provides insulated electrical feedthroughs through the support substrate (24).
Abstract:
Integrated packages incorporating multilayer ceramic circuit boards mounted on a metal support substrate can be used for temperature control by the metal support substrate. Various electronic components, as well as additional temperature control devices, can be connected to the circuit boards and to the metal support substrate to control or regulate the temperature of operation of the components. The integrated package can be hermetically sealed with a lid.