Microfluidic system and operation method thereof

    公开(公告)号:US12121897B2

    公开(公告)日:2024-10-22

    申请号:US16769103

    申请日:2018-12-21

    Abstract: A microfluidic system, including: a container, an ultrasound transmitter assembly, and a phononic crystal plate. The container is configured to accommodate a solution containing microparticles. The ultrasound transmitter assembly is configured to transmit ultrasonic waves to the phononic crystal plate, where the ultrasonic waves have a frequency which is the same as a resonance frequency of the phononic crystal plate. The phononic crystal plate is placed in the solution, and configured to generate a local acoustic field on a surface of the phononic crystal plate under excitation of the ultrasonic waves, and induce an acoustic microstreaming vortex to generate an acoustic streaming shear stress on the microparticles. The phononic crystal plate defines therein cavities, the respective cavities are arranged periodically in the phononic crystal plate, and all the respective cavities are filled with gas.

    Method and device for acquiring biomechanical parameters based on ultrasonic elastomyogram

    公开(公告)号:US11452502B2

    公开(公告)日:2022-09-27

    申请号:US16482802

    申请日:2017-12-26

    Abstract: A method and a device for acquiring biomechanical parameters based on an ultrasonic elastomyogram are provided, wherein the method includes: synchronously collecting a dynamic myodynamics image sequence and a dynamic elasticity image sequence of a single skeletal muscle under continuous stretching; acquiring a myodynamics parameter corresponding to each myodynamics image in the dynamic myodynamics image sequence and an elasticity modulus value corresponding to each elasticity image in the dynamic elasticity image sequence respectively; and generating an ultrasonic elastomyogram curve with the myodynamics parameter as the abscissa and the synchronized elasticity modulus value as the ordinate, and estimating a muscle biomechanical parameter based on the ultrasonic elastomyogram curve. Dynamically changing biomechanical parameters can be obtained, and the obtained muscle biomechanical parameters have relatively high accuracy.

Patent Agency Ranking