Abstract:
A cathode assembly includes a substrate (100), a plurality of electrically conducting strips (101), deposited on the substrate, and a continuous layer of diamond material (200) deposited over the plurality of electrically conducting strips and portions of the substrate exposed between the plurality of electrically conducting strips.
Abstract:
A flat panel display for displaying visual information includes a plurality of corresponding light-emitting anodes (130), and field-emission cathodes (170), each of the anodes emitting light in response to emission from each of the corresponding cathodes, each of the cathodes (170) including a layer of low work function material having a relatively flat emission surface of a plurality of distributed localized electron emission sites and a grid assembly (102) interposed between the corresponding anodes (130) and cathodes (170) to thereby control emission levels to the anodes from the corresponding cathodes.
Abstract:
A matrix addressed diode flat panel display (820) including a diode pixel structure. The flat panel display includes a cathode assembly having a plurality of cathodes (210-280), each cathode including a plurality of cathode conductive material (440) and a layer of low effective work-function material (460) deposited over the cathode conductive material and an anode assembly having a plurality of anodes (290-292), each anode including a layer of anode conductive material (410) and a cathodoluminescent material (430) deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive the charged particle emissions from the cathode assembly. The display further includes means (100) for selectively varying field emissions between the plurality of corresponding light-emitting anodes and field-emission cathodes.
Abstract:
A flat panel display of a field emission type having a triode (three terminal) structure and useful as a device for displaying visual information is disclosed. The display comprises a plurality of corresponding light-emitting anodes and field-emission cathodes, each of the anodes emitting light in response to emission from each of the corresponding cathodes, each of the cathodes including a layer of low work function material having a relatively flat emission surface comprising a plurality of distributed localized electron emission sites and a grid assembly interspersed between the corresponding anodes and cathodes to thereby control emission levels to the anodes from the corresponding cathodes. In the preferred embodiment of the invention, the layer of low work function material is amorphic diamond film. The grid assembly comprises a conductive layer deposited between the plurality of anodes and cathodes and over interstices between the cathodes, the conductive layer having apertures therein, the cathodes aligned with, and of the same size as, the apertures.
Abstract:
A flat panel display for displaying visual information includes a plurality of corresponding light-emitting anodes (130), and fieldemission cathodes (170), each of the anodes emitting light in response to emission from each of the corresponding cathodes, each of the cathodes (170) including a layer of low work function material having a relatively flat emission surface of a plurality of distributed localized electron emission sites and a grid assembly (102) interposed between the corresponding anodes (130) and cathodes (170) to thereby control emission levels to the anodes from the corresponding cathodes.
Abstract:
A matrix-addressed diode flat panel display of field emission type is described, utilizing a diode (two terminal) pixel structure. The flat panel display comprises a cathode assembly having a plurality of cathodes, each cathode including a layer of cathode conductive material and a layer of a low effective work-function material deposited over the cathode conductive material and an anode assembly having a plurality of anodes, each anode including a layer of anode conductive material and a layer of cathodoluminescent material deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive charged particle emissions from the cathode assembly, the cathodoluminescent material emitting light in response to the charged particle emissions. The flat panel display further comprises means for selectively varying field emission between the plurality of corresponding light-emitting anodes and field-emission cathodes to thereby effect an addressable grey-scale operation of the flat panel display.
Abstract:
A matrix-addressed diode flat panel display of field emission type is described, utilizing a diode (two terminal) pixel structure. The flat panel display comprises a cathode assembly having a plurality of cathodes, each cathode including a layer of cathode conductive material and a layer of a low effective work-function material deposited over the cathode conductive material and an anode assembly having a plurality of anodes, each anode including a layer of anode conductive material and a layer of cathodoluminescent material deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive charged particle emissions from the cathode assembly, the cathodoluminescent material emitting light in response to the charged particle emissions. The flat panel display further comprises means for selectively varying field emission between the plurality of corresponding light-emitting anodes and field-emission cathodes to thereby effect an addressable grey-scale operation of the flat panel display.
Abstract:
A flat panel display of a field emission type having a triode (three terminal) structure and useful as a device for displaying visual information is disclosed. The display comprises a plurality of corresponding light-emitting anodes and field-emission cathodes, each of the anodes emitting light in response to emission from each of the corresponding cathodes, each of the cathodes including a layer of low work function material having a relatively flat emission surface comprising a plurality of distributed localized electron emission sites and a grid assembly interspersed between the corresponding anodes and cathodes to thereby control emission levels to the anodes from the corresponding cathodes. In the preferred embodiment of the invention, the layer of low work function material is amorphic diamond film. The grid assembly comprises a conductive layer deposited between the plurality of anodes and cathodes and over interstices between the cathodes, the conductive layer having apertures therein, the cathodes aligned with, and of the same size as, the apertures.
Abstract:
A matrix addressed diode flat panel display (820) including a diode pixel structure. The flat panel display includes a cathode assembly having a plurality of cathodes (210-280), each cathode including a plurality of cathode conductive material (440) and a layer of low effective work-function material (460) deposited over the cathode conductive material and an anode assembly having a plurality of anodes (290292), each anode including a layer of anode conductive material (410) and a cathodoluminescent material (430) deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive the charged particle emissions from the cathode assembly. The display further includes means (100) for selectively varying field emissions between the plurality of corresponding light-emitting anodes and field-emission cathodes.