Abstract:
This invention relates to encoding methods using up-converting phosphors for high-throughput screening of catalysts. In particular, the invention relates to polymerization catalysts. In one embodiment of the invention, a monomer is combined with at least one labeled catalyst particle. The labeled catalyst particle comprises an up-converting phosphor label and a catalyst. The up-converting phosphor label identifies a particular catalyst. The monomer is polymerized to form a polymer bead surrounding the labeled catalyst particle. According to the invention, it is possible to combine two or more labeled catalyst particles in a commercially relevant large scale reactor to obtain direct comparison of different catalysts, and to avoid reactor effects that may occur when performed on the microscale. After the reaction, the resulting polymer beads are sorted, based on their size and/or phosphor labels. The polymer beads may also be further characterized to determine various physical and chemical properties of the resultant polymer.
Abstract:
A process is provided for use in the conversion of alkanes into alkylene oxides, having particular utility in the conversion of propane to form propylene oxide, using a lanthanide-promoted, supported, silver catalyst prepared via precipitation. A preferred embodiment uses silver nitrate and lanthanum nitrate to form the catalyst on a BaCO3 support.
Abstract:
Hydrolytically degradable olefin copolymers, such as ethylene copolymers, contain a hydrolyzable component in the backbone that allows the copolymer to be broken down into dispersable fragments upon exposure to aqueous conditions. The copolymers are prepared by transition metal-catalyzed polymerization.
Abstract:
Workstation, apparatuses and methods for the high-throughput synthesis, screening and/or characterization of combinatorial libraries. The invention relates to an array, which permits various high-throughput methods for synthesis, screening and/or characterization in the same array, without requiring sample transfer from the array. In a preferred embodiment, the synthesis, screening, and/or characterization steps are carried out in a highly parallel fashion, where more than one compound is synthesized, screened, and/or characterized at the same time. The invention may be practiced at the microscale. The array may comprise thermal channels, for regulating the temperature of the wells in the array. The wells of the array may comprise a membrane, which is used in various screening and characterization methods. The invention also relates to a covered array, comprising the array and an array cover, as well as an apparatus comprising the array, which comprises the array, an array cover and a stage. The array, array cover, and the stage may be modified as required for a variety of synthesis and/or analysis techniques. The array is easily interchangeable between different analytical instruments, and in an embodiment, the invention relates to an automated workstation, where the array is transferred between different synthesis, screening, and characterization stations. The invention also relates to a variety of methods for synthesis, screening, and characterization, which are adapted for combinatorial chemistry.
Abstract:
Workstation, apparatuses and methods for the high-throughput synthesis, screening and/or characterization of combinatorial libraries. The invention relates to an array, which permits various high-throughput methods for synthesis, screening and/or characterization in the same array, without requiring sample transfer from the array. In a preferred embodiment, the synthesis, screening, and/or characterization steps are carried out in a highly parallel fashion, where more than one compound is synthesized, screened, and/or characterized at the same time. The invention may be practiced at the microscale. The array may comprise thermal channels, for regulating the temperature of the wells in the array. The wells of the array may comprise a membrane, which is used in various screening and characterization methods. The invention also relates to a covered array, comprising the array and an array cover, as well as an apparatus comprising the array, which comprises the array, an array cover and a stage. The array, array cover, and the stage may be modified as required for a variety of synthesis and/or analysis techniques. The array is easily interchangeable between different analytical instruments, and in an embodiment, the invention relates to an automated workstation, where the array is transferred between different synthesis, screening, and characterization stations. The invention also relates to a variety of methods for synthesis, screening, and characterization, which are adapted for combinatorial chemistry. Any of the embodiments of the invention may be used either alone or taken in various combinations.
Abstract:
The invention is directed to olefin copolymers composed of nonhydrolyzable monomer units and hydrolyzable monomer units, the latter resulting from copolymerization of monomers containing a linkage that is hydrolytically cleavable in the presence of aqueous base or aqueous acid. Generally, the hydrolyzable monomer units represent a significant fraction of the copolymer, such that upon hydrolysis, a substantial portion of the copolymer is degraded into low molecular weight fragments. Also provided are degradable articles that are at least partially composed of a degradable copolymer in which hydrolyzable monomer units represent at least 20 mole % of the copolymer. These degradable articles include agricultural film products, adhesive tape substrates, bed linens, containers, disposable absorbent articles, packaging materials, bags, labels, pillow cases, protective clothing, surgical drapes, sponges, tampon applicators, disposable syringes, temporary enclosures and temporary siding, toys, wipes, foamed plastic products, and controlled release pellets, strips and tabs.
Abstract:
Novel metallocene compounds are provided which are useful as polymerization catalysts, particularly in the polymerization of addition polymerizable monomers such as olefinic or vinyl monomers. Preferred polymer compositions prepared using the novel catalysts are bimodal or multimodal in nature, typically having a bimodal or multimodal molecular weight distribution. The metallocenes are binuclear or multinuclear, and contain two or more chemically distinct active sites. Methods for synthesizing the novel catalysts are also provided, as are methods for using the novel compounds as homogeneous or heterogeneous polymerization catalysts.
Abstract:
A process is provided for preparing polymer compositions which are multimodal in nature. The process involves contacting, under polymerization conditions, a selected addition polymerizable monomer with a metallocene catalyst having two or more distinct and chemically different active sites, and a catalyst activator. The catalyst has structure (Z).
Abstract:
CATALYSTS FOR THE HYDRODENITROGENATION OF ORGANIC MATERIALS The present invention discloses a process for forming a catalyst for the hydrodenitrogenation of an organic feedstock, which includes (a) obtaining a precatalyst comprising cobalt and molybdenum or nickel and molybdenum; (b) adding in a non-oxidizing an atmosphere selected from hydrogen, helium, nitrogen, neon, argon, carbon monoxide or mixtures thereof to the precatalyst of step (a), a transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the components: and (c) heating the chemically combined catalyst of step (b) optionally in vacuum to remove residual volatile organic materials. Preferably, a precatalyst of cobalt/molybdenum or alumina is heated between 100.degree. and 500.degree.C in a hydrogen atmosphere with an organometallic moiety of ruthenium, preferably ruthenium carbonyl. The invention further includes the catalysts obtained and the process of hydrodenitrogenation of organic feedstocks including a crude petroleum residue, a petroleum fraction, an oil shale fraction, a tar sands fraction, a coal derived powder, a coal derived liquid or mixtures thereof: The process reduces the amount of hydrogen usually needed to obtain hydrodenitrogenation and more selectively produces aromatic product than saturated organic product.