Abstract:
The invention concerns an inorganic scintillator material of general composition M1-xCexCl3, wherein: M is selected among lanthanides or lanthanide mixtures, preferably among the elements or mixtures of elements of the group consisting of Y, La, Gd, Lu, in particular among the elements or mixtures of elements of the group consisting of La, Gd and Lu; and x is the molar rate of substitution of M with cerium, x being not less than 1 mol %and strictly less than 100 mol %. The invention also concerns a method for growing said monocrystalline scintillator material, and the use of said scintillator material as component of a scintillating detector in particular for industrial and medical purposes and in the oil industry.
Abstract:
The invention relates to an inorganic rare-earth iodide scintillation material of formula A X Ln (y-y',) Ln' y' I (x+3y) in which: A represents at least one element selected among Li, Na, K, Rb, Cs; Ln represents at least one first rare-earth element selected among La, Gd, Y, Lu, said first rare-earth element having a valency of 3+ in the aforementioned formula: Ln' represents at least one second rare-earth element selected among Ce, Tb, Pr, said second rare-earth element having a valency of 3+ in the aforementioned formula, x is an integer and represents 0, 1, 2 or 3; y is an integer or non-integer greater than 0 and less than 3, and; y' is an integer or non-integer greater than 0 and less than y. This material presents a high stopping power, a rapid decay time, in particular, less than 100 ns, a good energy resolution (in particular, less than 6% at 662 keV) and a high luminous level. This material can be used in nuclear medicine equipment, in particular, in Anger-type gamma cameras and in positron emission tomography scanners.
Abstract:
The invention concerns an inorganic scintillator material of general composition M1-xCexCl3, wherein: M is selected among lanthanides or lanthanide mixtures, preferably among the elements or mixtures of elements of the group consisting of Y, La, Gd, Lu, in particular among the elements or mixtures of elements of the group consisting of La, Gd and Lu; and x is the molar rate of substitution of M with cerium, x being not less than 1 mol % and strictly less than 100 mol %. The invention also concerns a method for growing said monocrystalline scintillator material, and the use of said scintillator material as component of a scintillating detector in particular for industrial and medical purposes and in the oil industry.
Abstract:
Material centelleante inorgánico de composición general M1-xCexBr3 en el que: M se elige entre los lantánidos o las mezclas de lantánidos del grupo: La, Gd, Y, y especialmente se elige entre los lantánidos o las mezclas de lantánidos del grupo: La, Gd, y en el que: x es el nivel molar de sustitución de M por cerio, con x superior o igual a 0, 0001 y estrictamente inferior a 1.
Abstract:
The invention concerns an inorganic scintillator material of general composition M1-xCexCl3, wherein: M is selected among lanthanides or lanthanide mixtures, preferably among the elements or mixtures of elements of the group consisting of Y, La, Gd, Lu, in particular among the elements or mixtures of elements of the group consisting of La, Gd and Lu; and x is the molar rate of substitution of M with cerium, x being not less than 1 mol % and strictly less than 100 mol %. The invention also concerns a method for growing said monocrystalline scintillator material, and the use of said scintillator material as component of a scintillating detector in particular for industrial and medical purposes and in the oil industry.
Abstract:
L'invention concerne un matériau scintillateur inorganique du type iodure de terre rare de formule AxLn(y-y,)Ln' y,,I(X+3y) dans laquelle: A représente a u moins un élément choisi parmi Li, Na, K, Rb, Cs ; Ln représente au moins une première terre rare choisi parmi La, Gd, Y, Lu, ladite première terre rare étant de valence 3+ dans ladite formule ; Ln' représente au moins une deuxiè me terre rare choisi parmi Ce, Tb, Pr, ladite deuxième terre rare étant de valence 3+ dans ladite formule, x est entier et représente 0, 1, 2 ou 3; y e st entier ou non entier et supérieur à 0 et inférieur à 3; y' est entier ou non entier, supérieur à 0 et inférieur à y. Ce matériau présente, un fort pouvoi r d'arrêt, un temps de décroissance rapide, notamment inférieur à 100 ns, une bonne résolution en énergie (notamment inférieure à 6 % à 662 keV) et un niveau lumineux élevé. Il peut être utilisé dans les appareils de médecine nucléaire, notamment les Gamma caméras de type Anger et les scanners à Tomographie d'Emission de Positons.
Abstract:
L'invention a trait à un matériau scintillateur inorganique de composition générale M1-xCexCl3, où M est choisi parmi les lanthanides ou les mélanges d e lanthanides, de préférence parmi les éléments ou les mélanges d'éléments du groupe: Y, La, Gd, Lu, notamment parmi les éléments ou les mélanges d'élémen ts du groupe: La, Gd, Lu, et où x est le taux molaire de substitution de M par du cérium, avec x supérieur ou égal à 1 mole % et strictement inférieur à 100 moles %. L'invention concerne également un procédé de croissance d'un tel matériau scintillateur monocristallin, et l'utilisation d'un tel matériau scintillateur comme composant d'un détecteur de scintillation notamment pour des applications industrielles, médicales ou pétrolières.
Abstract:
The invention relates to an inorganic rare-earth iodide scintillation material of formula A X Ln (y-y',) Ln' y' I (x+3y) in which: A represents at least one element selected among Li, Na, K, Rb, Cs; Ln represents at least one first rare-earth element selected among La, Gd, Y, Lu, said first rare-earth element having a valency of 3+ in the aforementioned formula: Ln' represents at least one second rare-earth element selected among Ce, Tb, Pr, said second rare-earth element having a valency of 3+ in the aforementioned formula, x is an integer and represents 0, 1, 2 or 3; y is an integer or non-integer greater than 0 and less than 3, and; y' is an integer or non-integer greater than 0 and less than y. This material presents a high stopping power, a rapid decay time, in particular, less than 100 ns, a good energy resolution (in particular, less than 6% at 662 keV) and a high luminous level. This material can be used in nuclear medicine equipment, in particular, in Anger-type gamma cameras and in positron emission tomography scanners.