Abstract:
A method and apparatus for vacuum-mounting at least one micro electro mechanical system (MEMS) on a substrate includes a gas injecting section for injecting an inert gas into a vacuum chamber; a substrate aligning section for aligning a semiconductor substrate and a cover, the cover having a cavity formed therein and a getter attached to an interior surface of the cavity; a bonding section for bonding the semiconductor substrate and the cover together; and a controlling section for controlling the substrate aligning section to align the semiconductor and the cover, for controlling the gas injecting section to inject the inert gas into the vacuum chamber, and for controlling the bonding section to bond the semiconductor substrate and the cover together after the inert gas is injected.
Abstract:
A metal wiring method for an undercut in a MEMS packaging process includes disposing a MEMS element on a silicon substrate, welding a glass wafer to an upper portion of the silicon substrate having the MEMS element disposed thereon, the glass wafer having a hole formed therein for connecting a metal wiring, depositing a thin metal film for the metal wiring in the hole, and ion-milling the deposited thin metal film. By the ion-milling, the method is capable of connecting a metal wiring to a via hole having an undercut.
Abstract:
An electro-acoustic transducer includes a conductive substrate provided with at least one cell and at least one electrode, and a pad substrate disposed corresponding to the conductive substrate and provided with at least one pad corresponding to the electrode, in which at least one of the electrode and the pad includes an electric pattern for electric connection and at least one dummy pattern that is provided around the electric pattern to be separated the electric pattern.
Abstract:
A filter using an air gap type film bulk acoustic resonator is provided. The present filter includes a substrate on which a first port, a second port, and a ground port are formed to be connected to an external terminal; at least one first film bulk acoustic resonator serially connecting the first port to the second port on the substrate; at least one second film bulk acoustic resonator parallel connected to an interconnection node formed between the first port and the second port; and at least one inductor serially connecting the second film bulk acoustic resonator to the ground port. The inductor included in the filter is fabricated with the first and second film bulk acoustic resonators as one body. Accordingly, a small-sized filter may be fabricated through a simplified process.
Abstract:
A band filter using a film bulk acoustic resonator and a method of fabricating the same. The method includes the steps of forming a membrane layer on a substrate, forming a plurality of resonators on an upper surface of the membrane layer, depositing a mask layer on a lower surface of the membrane layer and patterning the mask layer to form a plurality of main windows and sub windows, and forming cavities along the main windows in the substrate and forming sub walls in the cavities in such a way that the sub walls are separated apart from the membrane layer by using the notch effect caused during a dry etching. It is possible to precisely form cavities with desired sizes even if the cavities have different sizes, to reduce the notched areas in the cavities, to reduce the total size of the filter by decreasing a distance between the cavities and to reduce the total length of wires.
Abstract:
Provided is a microelectromechanical system (MEMS) that includes a first structure 100 and second structure 200. The first structure and second structure may each include a first substrate 110 and a second substrate 120. The first substrate of each structure may have first and second surfaces that face each other. The first substrate may include a via etching hole pattern penetrating the first surface and the second surface and a first non-via etching hole pattern penetrating the first surface. The second substrate 120 of each structure may have third and fourth surfaces that face each other. The second substrate may include a second non-via etching hole pattern penetrating the third surface in a position corresponding to the via etching hole pattern of the first substrate. In the microelectromechanical system (MEMS) the second surface of the first substrate and the third surface of the second substrate may be bonded together.
Abstract:
A film bulk acoustic resonator (FBAR) including a substrate (110) having an etched air gap (111) therethrough; a resonance part (141) having a first electrode (141), a piezoelectric film (143) and a second electrode (145) which are laminated in turn above the air gap; and an etching resistance layer disposed between the air gap and the resonance part to limit an etching depth in forming the air gap, thereby preventing damage to the resonance part (140).
Abstract:
A band filter using a film bulk acoustic resonator and a method of fabricating the same. The method includes the steps of forming a membrane layer on a substrate, forming a plurality of resonators on an upper surface of the membrane layer, depositing a mask layer on a lower surface of the membrane layer and patterning the mask layer to form a plurality of main windows and sub windows, and forming cavities along the main windows in the substrate and forming sub walls in the cavities in such a way that the sub walls are separated apart from the membrane layer by using the notch effect caused during a dry etching. It is possible to precisely form cavities with desired sizes even if the cavities have different sizes, to reduce the notched areas in the cavities, to reduce the total size of the filter by decreasing a distance between the cavities and to reduce the total length of wires.