Abstract:
A reference harmonic absorption curve of a laser absorption spectrometer can have a reference curve shape derived from a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. One or more portions of a test harmonic absorption curve having a test curve shape is compared with one or more portions of the reference harmonic absorption curve arising due to absorption of the background gases and not by absorption of the target analyte. Operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape.
Abstract:
A reference harmonic absorption curve of a laser absorption spectrometer, which can include a tunable or scannable laser light source and a detector, can have a reference curve shape and can include a first, second, or higher order harmonic signal of a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. The reference harmonic absorption curve can have been determined for the laser absorption spectrometer in a known or calibrated state. A test harmonic absorption curve having a test curve shape is compared with the reference harmonic absorption curve to detect a difference between the test curve shape and the reference curve shape that exceeds a predefined allowed deviation and therefore indicates a change in an output of the laser light source relative to the known or calibrated state. One or more operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape.
Abstract:
A reference harmonic absorption curve of a laser absorption spectrometer, which can include a tunable or scannable laser light source and a detector, can have a reference curve shape and can include a first, second, or higher order harmonic signal of a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. The reference harmonic absorption curve can have been determined for the laser absorption spectrometer in a known or calibrated state. A test harmonic absorption curve having a test curve shape is compared with the reference harmonic absorption curve to detect a difference between the test curve shape and the reference curve shape that exceeds a predefined allowed deviation and therefore indicates a change in an output of the laser light source relative to the known or calibrated state. One or more operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape.