SELF-CHECKING, DUAL RAILED, LEADING EDGE SYNCHRONIZER

    公开(公告)号:CA1253926A

    公开(公告)日:1989-05-09

    申请号:CA508763

    申请日:1986-05-09

    Abstract: SELF-CHECKING, DUAL RAILED, LEADING EDGE SYNCHRONIZER The present invention relates to a digital logic circuit and method for synchronizing the leading edges of a skewed true-complement signal pair. The circuit of the present invention is comprised of two similar, interconnected circuit halves, each of which includes three D flip-flop stages. The outputs from the second D flip-flop stages from the two circuit halves are applied to the two inputs of two identical logic gates, such that the signal pair is synchronously transmitted to a pair of output gates through a third D flip-flop stage in each circuit half. The second D flip-flop stages also prevent metastable states from reaching the synchronizer output. Metastable states may result if the input setup time is violated for the first D flip-flop stages. The third D flip-flop stage in each circuit half also eliminates any signal irregularities generated in the logic circuitry from appearing on the synchronizer output lines. The present invention is self-checking in that any single fault in the input signals or in the synchronizer circuit itself will result in the synchronizer output pair not having a true complement relationship.

    4.
    发明专利
    未知

    公开(公告)号:NO861863L

    公开(公告)日:1986-11-11

    申请号:NO861863

    申请日:1986-05-09

    Abstract: The present invention is an input/output controller for providing total data integrity for any single point failure. The I/O controller comprises a processor module having two microprocessors, an associated memory, a direct memory access module ( >), and a processor support module ( >); a device drive interface; and a channel interface. The two microprocessors are operated in lockstep as a dual modular redundant processor system. The processors provide true and complement, respectively, addresses, data and control strobes. The PSM compares the true and complement data to detect errors (i.e., corresponding data bits not being a true-complement pair) and generates parity protected data (and checks parity) on the data bus. The PSM also generates and checks dual railed control strobes and provides synchronization of all control strobes and interrupt signals to enable the true-complement pair of microprocessors to operate in lock-step. The DMA compares the redundant addresses from the processors to detect errors and to generate parity protected addresses (and check parity) on the address bus. The DMA also generates and checks bus arbitration signals and controls direct memory access. Self-checking checkers are used to check the various dual railed, true-complement pairs of signals to detect, locate and isolate faults. Miscompares between true-complement address, data and control signals and parity errors detected in reading program instructions from memory all are treated as fatal errors, which cause both processors to halt. Other types of errors are treated as nonfatal, which cause processor exceptions during which appropriate programming is executed to locate and isolate such errors.

    5.
    发明专利
    未知

    公开(公告)号:DE3686902T2

    公开(公告)日:1993-02-18

    申请号:DE3686902

    申请日:1986-05-09

    Abstract: The present invention relates to a digital logic circuit and method for synchronizing the leading edges of a skewed true-complement signal pair. The circuit of the present invention is comprised of two similar, interconnected circuit halves, each of which includes three D flip-flop stages. The outputs from the second D flip-flop stages from the two circuit halves are applied to the two inputs of two identical logic gates, such that the signal pair is synchronously transmitted to a pair of output gates through a third D flip-flop stage in each circuit half. The second D flip-flop stages also prevent metastable states from reaching the synchronizer output. Metastable states may result if the input setup time is violated for the first D flip-flop stages. The third D flip-flop stage in each circuit half also eliminates any signal irregularities generated in the logic circuitry from appearing on the synchronizer output lines. The present invention is self-checking in that any single fault in the input signals or in the synchronizer circuit itself will result in the synchronizer output pair not having a true complement relationship.

    6.
    发明专利
    未知

    公开(公告)号:AT81427T

    公开(公告)日:1992-10-15

    申请号:AT86303561

    申请日:1986-05-09

    Abstract: The present invention relates to a digital logic circuit and method for synchronizing the leading edges of a skewed true-complement signal pair. The circuit of the present invention is comprised of two similar, interconnected circuit halves, each of which includes three D flip-flop stages. The outputs from the second D flip-flop stages from the two circuit halves are applied to the two inputs of two identical logic gates, such that the signal pair is synchronously transmitted to a pair of output gates through a third D flip-flop stage in each circuit half. The second D flip-flop stages also prevent metastable states from reaching the synchronizer output. Metastable states may result if the input setup time is violated for the first D flip-flop stages. The third D flip-flop stage in each circuit half also eliminates any signal irregularities generated in the logic circuitry from appearing on the synchronizer output lines. The present invention is self-checking in that any single fault in the input signals or in the synchronizer circuit itself will result in the synchronizer output pair not having a true complement relationship.

    DUAL PROCESSOR ERROR DETECTION SYSTEM

    公开(公告)号:AU568977B2

    公开(公告)日:1988-01-14

    申请号:AU5720486

    申请日:1986-05-07

    Abstract: The present invention is an input/output controller for providing total data integrity for any single point failure. The I/O controller comprises a processor module having two microprocessors, an associated memory, a direct memory access module ( >), and a processor support module ( >); a device drive interface; and a channel interface. The two microprocessors are operated in lockstep as a dual modular redundant processor system. The processors provide true and complement, respectively, addresses, data and control strobes. The PSM compares the true and complement data to detect errors (i.e., corresponding data bits not being a true-complement pair) and generates parity protected data (and checks parity) on the data bus. The PSM also generates and checks dual railed control strobes and provides synchronization of all control strobes and interrupt signals to enable the true-complement pair of microprocessors to operate in lock-step. The DMA compares the redundant addresses from the processors to detect errors and to generate parity protected addresses (and check parity) on the address bus. The DMA also generates and checks bus arbitration signals and controls direct memory access. Self-checking checkers are used to check the various dual railed, true-complement pairs of signals to detect, locate and isolate faults. Miscompares between true-complement address, data and control signals and parity errors detected in reading program instructions from memory all are treated as fatal errors, which cause both processors to halt. Other types of errors are treated as nonfatal, which cause processor exceptions during which appropriate programming is executed to locate and isolate such errors.

    8.
    发明专利
    未知

    公开(公告)号:MX164336B

    公开(公告)日:1992-08-04

    申请号:MX246086

    申请日:1986-05-12

    Abstract: The present invention relates to a digital logic circuit and method for synchronizing the leading edges of a skewed true-complement signal pair. The circuit of the present invention is comprised of two similar, interconnected circuit halves, each of which includes three D flip-flop stages. The outputs from the second D flip-flop stages from the two circuit halves are applied to the two inputs of two identical logic gates, such that the signal pair is synchronously transmitted to a pair of output gates through a third D flip-flop stage in each circuit half. The second D flip-flop stages also prevent metastable states from reaching the synchronizer output. Metastable states may result if the input setup time is violated for the first D flip-flop stages. The third D flip-flop stage in each circuit half also eliminates any signal irregularities generated in the logic circuitry from appearing on the synchronizer output lines. The present invention is self-checking in that any single fault in the input signals or in the synchronizer circuit itself will result in the synchronizer output pair not having a true complement relationship.

    SELF-CHECKING, DUAL RAILED, LEADING EDGE SYNCHRONIZER

    公开(公告)号:AU5720386A

    公开(公告)日:1986-11-13

    申请号:AU5720386

    申请日:1986-05-07

    Abstract: The present invention relates to a digital logic circuit and method for synchronizing the leading edges of a skewed true-complement signal pair. The circuit of the present invention is comprised of two similar, interconnected circuit halves, each of which includes three D flip-flop stages. The outputs from the second D flip-flop stages from the two circuit halves are applied to the two inputs of two identical logic gates, such that the signal pair is synchronously transmitted to a pair of output gates through a third D flip-flop stage in each circuit half. The second D flip-flop stages also prevent metastable states from reaching the synchronizer output. Metastable states may result if the input setup time is violated for the first D flip-flop stages. The third D flip-flop stage in each circuit half also eliminates any signal irregularities generated in the logic circuitry from appearing on the synchronizer output lines. The present invention is self-checking in that any single fault in the input signals or in the synchronizer circuit itself will result in the synchronizer output pair not having a true complement relationship.

    10.
    发明专利
    未知

    公开(公告)号:NO861862L

    公开(公告)日:1986-11-11

    申请号:NO861862

    申请日:1986-05-09

    Abstract: The present invention relates to a digital logic circuit and method for synchronizing the leading edges of a skewed true-complement signal pair. The circuit of the present invention is comprised of two similar, interconnected circuit halves, each of which includes three D flip-flop stages. The outputs from the second D flip-flop stages from the two circuit halves are applied to the two inputs of two identical logic gates, such that the signal pair is synchronously transmitted to a pair of output gates through a third D flip-flop stage in each circuit half. The second D flip-flop stages also prevent metastable states from reaching the synchronizer output. Metastable states may result if the input setup time is violated for the first D flip-flop stages. The third D flip-flop stage in each circuit half also eliminates any signal irregularities generated in the logic circuitry from appearing on the synchronizer output lines. The present invention is self-checking in that any single fault in the input signals or in the synchronizer circuit itself will result in the synchronizer output pair not having a true complement relationship.

Patent Agency Ranking