Abstract:
A thermal detection system (10) includes a focal plane array (12), a thermal isolation structure (14), and an integrated circuit substrate (16). Focal plane array (12) includes thermal sensors (28), each having an associated thermal sensitive element (30). Thermal sensitive element (30) is coupled with one side to infrared absorber and common electrode assembly (36) and on the opposite side to an associated contact pad (20) disposed on the integrated circuit substrate (16). Reticulation kerfs (52a, 52b) separate adjacent thermal sensitive elements (30a, 30b, 30c) by a distance at least half the average width (44, 46) of a single thermal sensitive element (30a, 30b, 30c). A continuous, non-reticulated optical coating (38) may be disposed over thermal sensitive elements (30a, 30b, 30c) to maximize absorption of thermal radiation incident to focal plane array (12).
Abstract:
A novel multiple level mask (e.g. tri-level mask 36) process for masking achieves a desired thick mask with substantially vertical walls and thus improves the ion milling process of ceramic materials (e.g. BST). An embodiment of the present invention is a microelectronic structure comprising a ceramic substrate, an ion mill mask layer (e.g. photoresist 42) overlaying the substrate, a dry-etch-selective mask layer (e.g. TiW 40) overlaying the ion mill mask layer, the dry-etch-selective mask layer comprising a different material than the ion mill mask layer, a top photosensitive layer (38) overlaying the dry-etch-selective mask layer, the top photosensitive layer comprising a different material than the dry-etch-selective mask layer, and a predetermined pattern formed in the top photosensitive layer, the dry-etch-selective mask layer and the ion mill mask layer. The predetermined pattern has substantially vertical walls in the ion mill mask layer.
Abstract:
A novel multiple level mask (e.g. tri-level mask 36) process for masking achieves a desired thick mask with substantially vertical walls and thus improves the ion milling process of ceramic materials (e.g. BST). An embodiment of the present invention is a microelectronic structure comprising a ceramic substrate, an ion mill mask layer (e.g. photoresist 42) overlaying the substrate, a dry-etch-selective mask layer (e.g. TiW 40) overlaying the ion mill mask layer, the dry-etch-selective mask layer comprising a different material than the ion mill mask layer, a top photosensitive layer (38) overlaying the dry-etch-selective mask layer, the top photosensitive layer comprising a different material than the dry-etch-selective mask layer, and a predetermined pattern formed in the top photosensitive layer, the dry-etch-selective mask layer and the ion mill mask layer. The predetermined pattern has substantially vertical walls in the ion mill mask layer.