Abstract:
A handheld sensor is disclosed. The sensor has a microcontroller, a current pulse control unit coupled to a light emitting diode (LED), and a photodiode. The microcontroller controls the current pulse control unit to provide a pulsed illumination of a target plant and the photodiode reads the magnitude of the reflectance from the target plant. The microcontroller accepts the reading from the photodiode and computes a normalized difference vegetative index (NDVI) based at least on the reading.
Abstract:
A method for in-season macro and micronutrient application based on predicted yield potential and a nutrient response index. The inventive method includes the steps of: determining a nutrient response index for a field, determining the normalized difference vegetation index (NDVI) of an area to fertilize; determining a predicted crop yield for the area; determining an attainable crop yield for the area; determining the nutrient requirement for the area as the difference between the nutrient removal at the attainable yield minus the nutrient removal at the predicted yield, adjusted by the efficiency of nutrient uptake in the particular crop. In one preferred embodiment, processing requirements at the time of application of the nutrient are eased by generating a lookup table of nutrient requirement relative to measured NDVI prior to application of the nutrient.
Abstract:
An apparatus for delivering air through a powered axle assembly and an improved powered axle assembly which incorporates the apparatus. The apparatus comprises: a base attachable to a non-rotating structure within the axle assembly and a rotor mountable in the axle assembly for rotating with the drive axle and for forming an air chamber between the rotor and the base. The base includes at least one air inlet for delivering air to the air chamber and the rotor includes at least one air outlet for air flow out of the chamber.
Abstract:
A nozzle attitude controller for use in connection with a farming apparatus for precision farming, the apparatus comprising an applicator vehicle (20), a boom (22) supported by and extending across the rear of the vehicle (20), a manifold (28) rotatably supported by the boom (22), a plurality of nozzles (26) disposed from the manifold and oriented in a direction opposite to the direction of movement of the vehicle (20), but disposed at an angle with respect to the horizontal (theta), the attitude controller including a linear actuator (40) operated by a stepper motor (41) and a radar sensor (42) which connects to the stepper motor (41) and which measures the speed of the vehicle such that pulses from the radar sensor (42) to the stepper motor (41) moves the linear actuator (40) to change the angle of the nozzle (theta) so that the horizontal component of its velocity is equal and opposite to the speed of the vehicle.
Abstract:
A low pressure plural component mixing nozzle for mixing plural component materials for coating the interior of small diameter conduits. A body defines a first passageway that extends from a right to a left side. The body further defines a second passageway communicating an inlet side with the first passageway proximate the right side and defining a third passageway communicating the inlet side with the first passageway proximate the left side. A fourth passageway passes through the body from the inlet side to the exit side. A mixer, such as a mixing cartridge, is located in the first passageway for mixing a fluid from the second passageway and a fluid from the third passageway and directing a mixture of the fluids into contact with fluid flowing through the fourth passageway wherein the mixture flows to an exit nozzle on a distal end of the body stem for exiting the device.
Abstract:
A spectral reflectance sensor including: a light source for emitting a modulated beam of red light; a light source for emitting a modulated beam of near infrared light; a receiver for receiving reflected light produced by either the red source or the near infrared source; a receiver for receiving incident light from either the red source or the infrared source; a signal conditioner responsive to the modulation such that the signals produced by the receivers in response to reflected and incident light from the source can be discriminated from signals produced by ambient light; and a microprocessor having an input such that the microprocessor can determine the intensities of incident red light, reflected red light; incident near infrared light; and reflected near infrared light. From these intensities, and by knowing the growing days since emergence or planting, the sensor can calculate the mid-growing season nitrogen fertilizer requirements of a plant.
Abstract:
A method for in-season macro and micronutrient application based on predicted yield potential and a nutrient response index. The inventive method includes the steps of: determining a nutrient response index for a field, determining the normalized difference vegetation index (NDVI) of an area to fertilize; determining a predicted crop yield for the area; determining an attainable crop yield for the area; determining the nutrient requirement for the area as the difference between the nutrient removal at the attainable yield minus the nutrient removal at the predicted yield, adjusted by the efficiency of nutrient uptake in the particular crop. In one preferred embodiment, processing requirements at the time of application of the nutrient are eased by generating a lookup table of nutrient requirement relative to measured NDVI prior to application of the nutrient.