-
公开(公告)号:US10700276B2
公开(公告)日:2020-06-30
申请号:US15744064
申请日:2016-04-22
Inventor: Hangbing Lv , Ming Liu , Qi Liu , Shibing Long
IPC: H01L45/00
Abstract: The present invention discloses a preparation method of a Cu-based resistive random access memory, and a memory. The preparation method includes: performing composition and a chemical combination treatment on a lower copper electrode (10) to generate a compound buffer layer (40), wherein the compound buffer layer (40) is capable of preventing the oxidation of the lower copper electrode (10); depositing a solid electrolyte material (50) on the compound buffer layer (40); and depositing an upper electrode (60) on the solid electrolyte material (50) to form the memory. In the above technical solution, the compound buffer layer (40) capable of preventing the oxidation of the lower copper electrode (10) is inserted between the lower copper electrode (10) and the solid electrolyte material (50) to efficiently prevent the oxidation of the lower copper electrode (10) in a growth process of the solid electrolyte material (50), such that an electrode interface does not become rough due to the oxidation, thereby solving the technical problem of relatively low reliability and yield of the device resulting from the rough electrode interface of the Cu-based resistive random access memory in the prior art, and thus the reliability and the yield of the device are improved.
-
公开(公告)号:US10305035B2
公开(公告)日:2019-05-28
申请号:US15744063
申请日:2016-04-22
Inventor: Hangbing Lv , Ming Liu , Qi Liu , Shibing Long
Abstract: The present invention discloses a preparation method of a Cu-based resistive random access memory, and a memory. The preparation method includes: forming a copper wire in a groove through a Damascus copper interconnection process, wherein the copper wire includes a lower copper electrode for growing a storage medium, and the copper wire is arranged above a first capping layer; forming a second capping layer above the copper wire; forming a hole at a position corresponding to the lower copper electrode on the second capping layer, wherein the pore is used for exposing the lower copper electrode; performing composition and a chemical combination treatment on the lower copper electrode to generate a compound barrier layer, wherein the compound barrier layer is a compound formed by the chemical combination of elements Cu, Si and N, or a compound formed by the chemical combination of elements Cu, Ge and N; and depositing a solid electrolyte material and an upper electrode on the compound barrier layer. By means of the above technical solution, the technical problem of higher injection efficiency of Cu ions in the Cu-based resistive random access memory in the prior art is solved, and the fatigue properties of the memory are improved.
-