Self-gating resistive storage device having resistance transition layer in vertical trench in stacked structure of insulating dielectric layers and electrodes

    公开(公告)号:US10720578B2

    公开(公告)日:2020-07-21

    申请号:US16070485

    申请日:2016-04-29

    Abstract: Provided are a self-gating resistive storage device and a method for fabrication thereof; said self-gating resistive storage device comprises: lower electrodes; insulating dielectric layers arranged perpendicular to, and intersecting with, the lower electrodes to form a stacked structure, said stacked structure being provided with a vertical trench; a gating layer grown on the lower electrodes by means of self-alignment technique, the interlayer leakage channel running through the gating layer being isolated via the insulating dielectric layers; a resistance transition layer arranged in the vertical trench and connected to the insulating dielectric layers and the gating layer; and an upper electrode arranged in the resistance transition layer. In the storage device provided by the described technical solution, the gating layer is grown on the lower electrodes by means of self-alignment technique, such that the interlayer leakage channel running through the gating layer is isolated via the insulating dielectric layers; thus leakage between the upper and lower word lines through the gating layer is prevented, solving the technical problem in the prior art of leakage between the upper and lower word lines in a self-gating resistive storage device, and improving the reliability of the device.

    Preparation method of Cu-based resistive random access memory, and memory

    公开(公告)号:US10700276B2

    公开(公告)日:2020-06-30

    申请号:US15744064

    申请日:2016-04-22

    Abstract: The present invention discloses a preparation method of a Cu-based resistive random access memory, and a memory. The preparation method includes: performing composition and a chemical combination treatment on a lower copper electrode (10) to generate a compound buffer layer (40), wherein the compound buffer layer (40) is capable of preventing the oxidation of the lower copper electrode (10); depositing a solid electrolyte material (50) on the compound buffer layer (40); and depositing an upper electrode (60) on the solid electrolyte material (50) to form the memory. In the above technical solution, the compound buffer layer (40) capable of preventing the oxidation of the lower copper electrode (10) is inserted between the lower copper electrode (10) and the solid electrolyte material (50) to efficiently prevent the oxidation of the lower copper electrode (10) in a growth process of the solid electrolyte material (50), such that an electrode interface does not become rough due to the oxidation, thereby solving the technical problem of relatively low reliability and yield of the device resulting from the rough electrode interface of the Cu-based resistive random access memory in the prior art, and thus the reliability and the yield of the device are improved.

    Preparation method of Cu-based resistive random access memory

    公开(公告)号:US10305035B2

    公开(公告)日:2019-05-28

    申请号:US15744063

    申请日:2016-04-22

    Abstract: The present invention discloses a preparation method of a Cu-based resistive random access memory, and a memory. The preparation method includes: forming a copper wire in a groove through a Damascus copper interconnection process, wherein the copper wire includes a lower copper electrode for growing a storage medium, and the copper wire is arranged above a first capping layer; forming a second capping layer above the copper wire; forming a hole at a position corresponding to the lower copper electrode on the second capping layer, wherein the pore is used for exposing the lower copper electrode; performing composition and a chemical combination treatment on the lower copper electrode to generate a compound barrier layer, wherein the compound barrier layer is a compound formed by the chemical combination of elements Cu, Si and N, or a compound formed by the chemical combination of elements Cu, Ge and N; and depositing a solid electrolyte material and an upper electrode on the compound barrier layer. By means of the above technical solution, the technical problem of higher injection efficiency of Cu ions in the Cu-based resistive random access memory in the prior art is solved, and the fatigue properties of the memory are improved.

Patent Agency Ranking