Abstract:
Components formed of blow molded thermoplastic compositions are described. The blow molded thermoplastic compositions exhibit high strength and flexibility. Methods for forming the thermoplastic compositions are also described. Formation methods include dynamic vulcanization of a composition that includes an impact modifier dispersed throughout a polyarylene sulfide. A crosslinking agent is combined with the other components of the composition following dispersal of the impact modifier. The crosslinking agent reacts with the impact modifier to form crosslinks within and among the polymer chains of the impact modifier. The compositions can exhibit excellent physical characteristics at extreme temperatures and can be used to form, e.g., tubular member such as pipes and hoses and fibers.
Abstract:
Polyarylene sulfide compositions are described that exhibit high strength and flexibility. Methods for forming the polyarylene sulfide compositions are also described. Formation methods include dynamic vulcanization of a polyarylene sulfide composition that includes an impact modifier dispersed throughout the polyarylene sulfide. A crosslinking agent is combined with the other components of the composition following dispersal of the impact modifier throughout the composition. The crosslinking agent reacts with the impact modifier to form crosslinks within and among the polymer chains of the impact modifier. The compositions can exhibit excellent physical characteristics at extreme temperatures and can be used to form, e.g., tubular member such as pipes and hoses and fibers.
Abstract:
Components for automobiles are described that exhibit high strength and flexibility. The components are formed from a polyarylene sulfide that exhibits high strength and flexibility characteristics. Methods for forming the components are also described. Formation methods include dynamic vulcanization of a polyarylene sulfide composition that includes an impact modifier dispersed throughout the polyarylene sulfide. A crosslinking agent is combined with the other components of the composition following dispersal of the impact modifier throughout the composition. The automotive components can include tubular member such as pipes and hoses that can be utilized in exhaust systems, charge air systems, urea tanks, fuel systems, and so forth.
Abstract:
Disclosed is a UV stabilized polyarylene sulfide composition, methods of forming the composition, and UV stabilized products that can be formed of the composition. The UV stabilized polyarylene sulfide composition can include a reactively functionalized polyarylene sulfide polymer in conjunction with a UV stabilizer. The reactivity of the polyarylene sulfide polymer is formed during melt processing via reaction of a reactively functionalized disulfide compound with a starting polyarylene sulfide. The reactivity of the polyarylene sulfide can encourage interaction between the polyarylene sulfide polymer and the UV stabilizer, which can improve dispersion of the UV stabilizer throughout the composition and improve miscibility between the polyarylene sulfide polymer and the UV stabilizer. Products can incorporate high concentrations of UV stabilizer and/or can be formed to very small cross sectional dimensions without phase separation between the UV stabilizer and the polyarylene sulfide.
Abstract:
Pipe sections and methods for forming pipe sections are disclosed. A pipe section includes a hollow body formed from a polymer material, the hollow body having an inner surface and an outer surface, the inner surface defining an interior. The pipe section further includes a barrier layer surrounding and unbonded from the hollow body, the barrier layer having an inner surface and an outer surface. The barrier layer is formed from a continuous fiber reinforced thermoplastic material. Such pipe sections may be lightweight and flexible while exhibiting improved strength characteristics.
Abstract:
A polymer composition that contains a polyaryletherketone and a liquid crystalline polymer that includes repeating units derived from naphthenic hydroxycarboxylic acids, naphthenic dicarboxylic acids, or a combination thereof in an amount of about 15 mol. % or less of the polymer is provided. The composition optionally contains reinforcing fibers (e.g., glass fibers) in an amount of no more than about 10 wt. %.
Abstract:
Polyarylene sulfide compositions are described as are methods of forming the polyarylene sulfide compositions. The polyarylene sulfide compositions are formed by melt processing polyarylene sulfide, a reactively functionalized siloxane polymer and a non-aromatic impact modifier. The non-aromatic impact modifier is, e.g., an ethylene-based copolymer or terpolymer or a silicone elastomer. The compositions exhibit good strength and heat resistance characteristics and can be utilized in forming a variety of products such as automotive components and electrical components.
Abstract:
A fibrous material that contains polyarylene sulfide fibers coated with an emulsion copolymer is provided. The emulsion copolymer that is coated onto the polyarylene sulfide fibers is crosslinked. For example, the copolymer may contain a reactive co-monomer that acts as a crosslinking agent. Alternatively, a separate crosslinking agent may be combined with the emulsion copolymer. In either case, the resulting copolymer composition is cured after it is applied to the fibers to initiate the formation of crosslink bonds between the emulsion copolymer and create a three-dimensional network that is capable of coating and encapsulating the fibers. Without intending to be limited by theory, it is believed that this three-dimensional network is able to physically entrap disperse dyes when applied to the fibers.
Abstract:
An injection molded housing for a portable electronic device is provided. The housing contains a thermoplastic composition that includes a polyarylene sulfide melt processed in the presence of a disulfide compound and a filler. Without intending to be limited by theory, it is believed that the disulfide can undergo a chain scission reaction with the starting polyarylene sulfide to lower its melt viscosity, which can lead to decreased attrition of the filler and thus improved mechanical properties. Due to this ability to reduce viscosity during melt processing, the present inventors have discovered that relatively high molecular weight polyarylene sulfides can be fed to the extruder with little difficulty.
Abstract:
Pipe sections and methods for forming pipe sections are disclosed. A pipe section includes a hollow body, the hollow body having an inner surface and an outer surface, the inner surface defining an interior. The pipe section further includes a barrier layer surrounding the hollow body, the barrier layer having an inner surface and an outer surface. The barrier layer is formed from a polyarylene sulfide composition. The polyarylene sulfide composition includes a polyarylene sulfide and a crosslinked impact modifier. Such pipe sections exhibit high strength characteristics and flexibility as well as resistance to degradation, even in extreme temperature environments, while maintaining desirable processing characteristics.