Abstract:
A tag or smart label including a humidity sensor, and methods of manufacturing and using the same, are disclosed. The tag or smart label includes a substrate or backplane with a battery or antenna, a humidity sensor, and an integrated circuit thereon. The integrated circuit is in electrical communication with the humidity sensor and the antenna or battery, and is configured to process a signal from the humidity sensor corresponding to the humidity level or value in the environment to be monitored, and provide or generate a signal that represents the humidity level/value. The humidity sensor includes first and second electrodes that are a predetermined distance apart, a humidity-sensitive material having one or more electrical, mechanical or chemical properties that vary as a function of the humidity level / value, and a water- and/or humidity-permeable membrane covering the humidity-sensitive material.
Abstract:
An electronic device and methods of manufacturing the same are disclosed. One method of manufacturing the electronic device includes forming a first metal layer on a first substrate, forming an electrical device on a second substrate, forming electrical connectors on input and/or output terminals of the electrical device, selectively depositing a second metal on at least part of the first metal layer, and electrically connecting the electrical connectors to the first metal layer by contacting the electrical connectors to the second metal. The second metal is different from the first metal. The second metal improves adhesion and/or electrical connectivity of the first metal layer to the electrical connectors on the electrical device.
Abstract:
An electronic device and methods of manufacturing the same are disclosed. One method of manufacturing the electronic device includes forming an electrical device on a first substrate, depositing a passivation layer on the electrical device, printing a palladium- containing ink on exposed aluminum pads in or on the electrical device, converting the palladium-containing ink to a palladium-containing layer, and forming a conductive pad or bump on the palladium-containing layer. The passivation layer exposes the aluminum pads.
Abstract:
An electronic device, and methods of manufacturing the same are disclosed. The method of manufacturing the electronic device includes forming a first metal layer on a first substrate, forming an integrated circuit or a discrete electrical component on a second substrate, forming electrical connectors on input and/or output terminals of the integrated circuit or discrete electrical component, forming a second metal layer on the first metal layer, the second metal layer improving adhesion and/or electrical connectivity of the first metal layer to the electrical connectors on the integrated circuit or discrete electrical component, and electrically connecting the electrical connectors to the second metal layer.
Abstract:
A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.
Abstract:
A wireless (e.g., near field or RF) communication device, and methods of manufacturing the same are disclosed. The method of manufacturing the wireless communication device includes forming an integrated circuit on a first substrate, printing stud bumps on input and/or output terminals of the integrated circuit, forming an antenna on a second substrate, and electrically connecting ends of the antenna to the stud bumps. The antenna is configured to (i) receive and (ii) transmit or broadcast wireless signals.
Abstract:
A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.
Abstract:
An electronic device and methods of manufacturing the same are disclosed. One method of manufacturing the electronic device includes forming a first metal layer on a first substrate, forming an electrical device on a second substrate, forming electrical connectors on input and/or output terminals of the electrical device, selectively depositing a second metal on at least part of the first metal layer, and electrically connecting the electrical connectors to the first metal layer by contacting the electrical connectors to the second metal. The second metal is different from the first metal. The second metal improves adhesion and/or electrical connectivity of the first metal layer to the electrical connectors on the electrical device.
Abstract:
An electronic device, and methods of manufacturing the same are disclosed. The method of manufacturing the electronic device includes forming a first metal layer on a first substrate, forming an integrated circuit or a discrete electrical component on a second substrate, forming electrical connectors on input and/or output terminals of the integrated circuit or discrete electrical component, forming a second metal layer on the first metal layer, the second metal layer improving adhesion and/or electrical connectivity of the first metal layer to the electrical connectors on the integrated circuit or discrete electrical component, and electrically connecting the electrical connectors to the second metal layer.
Abstract:
A wireless (e.g., near field or RF) communication device, and methods of manufacturing the same are disclosed. The method of manufacturing the wireless communication device includes forming an integrated circuit on a first substrate, printing stud bumps on input and/or output terminals of the integrated circuit, forming an antenna on a second substrate, and electrically connecting ends of the antenna to the stud bumps. The antenna is configured to (i) receive and (ii) transmit or broadcast wireless signals.