Abstract:
A method for use in a physical vapor deposition coating process includes depositing a ceramic coating material from a plume onto at least one substrate to form a ceramic coating thereon, and during the deposition, rotating the at least one substrate at rotational speed selected with respect to deposition rate of the ceramic coating material onto the at least one substrate.
Abstract:
A method for use in a coating process includes pre-heating a substrate in the presence of a coating material and shielding the substrate during the pre-heating from premature deposition of the coating material by establishing a gas screen between the substrate and the coating material. An apparatus for use in a coating process includes a chamber, a crucible that is configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible. A second manifold provides gas during a later coating deposition to compress a vapor plume of the coating material and focus the plume on the substrate to increase deposition rate.