Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A plated polymer test specimen for measuring strain imparted to the plated polymer test specimen includes a polymeric substrate including a top, a bottom, a pair of opposing edges and a pair of opposing end edges, the top and bottom being plated with top and bottom metal layers respectively, the side edges and the end edges being at least substantially free of plating. The substrate includes two spaced-apart holes that extend through the top metal layer, substrate and the bottom metal layer. Alternatively, the substrate may comprise a composite layup structure. A method for testing the strain imparted to a plated polymer test specimen is also disclosed.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.