Abstract:
One exemplary embodiment of this disclosure relates to an article having a multi-layer wall structure having an embedded sensor. Further, the multi-layer wall structure and the sensor are bonded together.
Abstract:
A method of detecting conversion quality includes the steps of providing an article having a green material and a semiconductor material, processing the green material and the semiconductor material to produce a matrix composite, and detecting a matrix composite conversion quality with the semiconductor material.
Abstract:
An article includes a ceramic-based substrate and a barrier layer on the ceramic-based substrate. The barrier layer includes a matrix of barium-magnesium alumino-silicate or SiO 2 , a dispersion of silicon oxycarbide particles in the matrix, and a dispersion of particles, of the other of barium-magnesium alumino-silicate or SiO 2 , in the matrix.
Abstract:
A method for fabricating a metal-ceramic composite article includes a) depositing at least one layer of a powdered material onto a target surface, where the powdered material includes at least one metal and an energy-beam responsive ceramic precursor, and b) densifying the at least one metal and chemically converting at least a portion of the energy-beam responsive ceramic precursor to a ceramic material to form a densified layer by directing an energy-beam onto the at least one layer.
Abstract:
Disclosed is a method for controlling a microstructure of an inorganic material includes providing a structure that has a first region of an inorganic material having a first microstructure and a second region that is thermally responsive to electromagnetic radiation, the second region being adjacent the first region, and indirectly heating the first region by thermally activating the second region, using electromagnetic radiation, to generate heat. The generated heat converts the first microstructure of the inorganic material to a second, different microstructure. The method can be applied to control a microstructure of an inorganic coating on an inorganic fiber.
Abstract:
A method for fabricating a ceramic material includes providing a mobilized filler material capable of infiltrating a porous ceramic matrix composite. The mobilized filler material includes at least one of a ceramic material and a free metal. The mobilized filler material is infiltrated into pores of the porous ceramic matrix composite. The mobilized filler material is then immobilized within the pores of the porous ceramic matrix composite.
Abstract:
An additive fabrication process includes rotating a core member about a central axis. While the core member is rotating, a first material is selectively deposited onto the core member with respect to computerized design data representing an article to form a first radial layer of the article. While the core member with the first radial layer is rotating, a second material is selectively depositing onto the first radial layer with respect to the computerized design data to form a second radial layer of the article.
Abstract:
A feedstock for an additive manufacturing process includes a pre-ceramic polymer intermixed with a base material. A method of additive manufacturing includes melting and pyrolizing a feedstock containing metal and a pre-ceramic polymer. An article of manufacture includes an additive manufacturing component including a pyrolized feedstock.
Abstract:
A disclosed method of forming a ceramic article includes forming a pre-ceramic polymer article within a mold tool, and performing a first pyrolizing step on the initial pre-ceramic polymer article to form a ceramic article. The method further includes performing at least one pre-heat treatment polymer infiltration and pyrolizing (PIP) cycle on the ceramic article and an initial heat treatment cycle of the ceramic article after the at least one pre-heat treatment PIP cycle. Subsequent PIP cycles and heat treatment cycles are performed in combination to form a ceramic article including a desired density.