Abstract:
Methods, systems, and devices are disclosed for implementing electro-optical modulators in which a resonating cavity structure is coupled to a transmission waveguide. In one example, the resonating structure includes a ring resonator whose coupling strength is controlled via an electrical control signal. The ring resonator is made of a capacitor comprising monolayer graphene sheets separated by a thick layer of dielectric material.
Abstract:
A synchronizable optomechanical oscillator (OMO) network including at least two dissimilar silicon nitride (Si3N4) optomechanical resonators that can be excited to evolve into self-sustaining optomechanical oscillators (OMOs) coupled only through an optical radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscillation states.
Abstract:
The disclosed technology, in one aspect, includes an optical comb generator device which includes a laser cavity that includes an optical gain material to provide an optical gain and an optical path to allow laser light to circulate inside the laser cavity; and a high-Q resonator optically coupled in the optical path inside the laser cavity so that the laser light generated and sustained inside the laser cavity is in optical resonance with the high-Q resonator to cause laser light stored inside the high-Q resonator to have an optical intensity above a four wave mixing threshold of the high-Q resonator to cause parametric four wave mixing so as to produce an optical comb of different optical frequencies.
Abstract:
Methods, systems, and devices are disclosed for implementing an ultra-sensitive micro-Raman spectrometer based on high confinement nanometer-scale photonic structures, which can enhance the sensitivity while maintaining an extremely compact size. In one aspect, a portable, ultra-sensitive, chip-scale system for performing sensing and identification on liquid and gaseous samples based on Raman spectroscopy is disclosed. The disclosed chip-scale system can be especially useful for biosensing including glucose sensing and monitoring (e.g., finding concentrations of glucose in complex body fluids like blood, urine, or saliva). For example, in implementations for glucose monitoring, the disclosed technology can make an impact that not only provides relief from the typical required "finger prick" for blood sampling, but also provides an easy-to-use device that diabetics and other people in need of glucose monitoring (and eventually other types of monitoring) can use.
Abstract:
There is set forth in one embodiment an apparatus and method for imparting a phase shift to an input waveform for output of a converted waveform. In one embodiment, a phase shift can be provided by four wave mixing of an input waveform and a pump pulse. In one embodiment, there is set forth an apparatus and method for generating a high resolution time domain representation of an input waveform comprising: dispersing the input waveform to generate a dispersed input waveform; subjecting the dispersed input waveform to four wave mixing by combining the dispersed input waveform with a dispersed pump pulse to generate a converted waveform; and presenting the converted waveform to a detector unit. In one embodiment a detector unit can include a spectrometer (spectrum analyzer) for recording of the converted waveform and output of a record representing the input waveform.
Abstract:
A broadly tunable optomechanical apparatus includes a resonator component consisting of two coupled optical microring resonators disposed in a stacked relationship, an input waveguide disposed adjacent a periphery of the resonator component, and a control signal waveguide coupled to the resonator component or the input signal waveguide. A broadband optical switch includes a plurality of resonator components each of which corresponds to a selected signal wavelength, predetermined by the geometry and design of the resonator component, and a respective plurality of output signal waveguides, and a respective plurality of a control signal waveguides each coupled to a respective resonator component. Associated tuning and switching methods and applications are disclosed.
Abstract:
A thermally stabilized, high speed, micrometer-scale silicon electro-optic modulator is provided. Methods for maintaining desired temperatures in electro-optic modulators are also provided. The methods can be used to maintain high quality modulation in the presence of thermal variations from the surroundings. Direct current injection into the thermally stabilized electro-optic modulator is used to maintain the modulation performance of the modulator. The direct injected current changes the local temperature of the thermally stabilized electro-optic modulator to maintain its operation over a wide temperature range.
Abstract:
An integrated optofluidic system for trapping and transporting particles for analysis is provided comprising a planar substrate; a microfluidic channel; and a waveguide integrated with the channel. A microsphere particle in the integrated optofluidic system can act as a cavity, allowing light to circulate many thousands of times around the circumference of the microsphere. Optical trapping and transport is used for nanoscale positioning to excite the microsphere resonances. Sensitive measurements on molecules can be accomplished by monitoring changes in whispering gallery modes (WGMs) that propagate around the circumference of the microsphere. By using a broadband or supercontinuum light source, a microsphere can be trapped and many WGM resonances can be excited through the visible and near-infrared wavelengths simultaneously. After the resonances are measured using the waveguide transmission, the microsphere can be freed by decreasing the optical power and the process repeated with a different microsphere.
Abstract:
Systems and methods are provided for ultrafast optical waveform sampling based on temporal stretching of an input signal waveform. Temporal stretching is performed using a time lens based on four-wave mixing in a nonlinear medium. The signal is passed through an input dispersive element. The dispersed signal is sent into the time lens, which comprises a chirped pump pulse and a nonlinear medium. The chirped pump pulse is combined with the signal. The four-wave mixing process occurs in the nonlinear device or medium, which results in the generation of a signal at a new optical frequency (idler). The idler is spectrally separated from the signal and pump pulse using a bandpass filter and sent into an output dispersive element. The output dispersive element is longer than the input dispersive element and the temporal stretching factor is given by the ratio between the dispersions of these two elements.