Abstract:
Methods, systems, and computer readable media for using actuated surface-attached posts for assessing biofluid rheology are disclosed. According to one aspect, a method for testing properties of a biofluid specimen includes placing the specimen onto a micropost array having a plurality of microposts extending outwards from a substrate, wherein each micropost includes a proximal end attached to the substrate and a distal end opposite the proximal end, and generating an actuation force in proximity to the micropost array to actuate the microposts, thereby compelling at least some of the microposts to exhibit motion. The method further includes measuring the motion of at least one of the microposts in response to the actuation force and determining a property of the specimen based on the measured motion of the at least one micropost.
Abstract:
Methods, systems, and computer readable media for determining physical properties of a specimen in a portable point of care device are disclosed. According to one aspect, a method includes placing a specimen onto an active surface that includes a plurality of microposts extending outwards from a substrate, wherein each micropost includes a proximal end attached to the substrate and a distal end opposite the proximal end and generating an actuation force in proximity to the micropost array that compels at least some of the microposts to exhibit motion. The method further includes detecting light that is emitted by an illumination source and interacts with the active surface while the at least some microposts exhibit motion in response to the actuation force, measuring data that represents the detected light interacting with the active surface, and determining at least one physical property of the specimen based on the measured data.
Abstract:
Methods, systems, and computer readable media for using actuated surface-attached posts for assessing biofluid rheology are disclosed. According to one aspect, a method for testing properties of a biofluid specimen includes placing the specimen onto a micropost array having a plurality of microposts extending outwards from a substrate, wherein each micropost includes a proximal end attached to the substrate and a distal end opposite the proximal end, and generating an actuation force in proximity to the micropost array to actuate the microposts, thereby compelling at least some of the microposts to exhibit motion. The method further includes measuring the motion of at least one of the microposts in response to the actuation force and determining a property of the specimen based on the measured motion of the at least one micropost.
Abstract:
A flow cell is provided that includes surface-attached structures in a chamber. The structures are movable in response to an actuation force. The flow cell may be utilized to extract or isolate nucleic acids from a sample flowing through the flow cell, wherein some portion of the flow cell comprises nucleic acid adsorbant material (e.g. the outer surface of the surface-attached structures, an inside surface of the chamber of the flow cell, beads attached to the outer surface of the surface-attached structures, or beads integrated into the outer surface of the surface-attached structures). Further, systems and methods for extraction of nucleic acids using such flow cells are also provided.
Abstract:
Abstract A flow cell based target extraction system comprising a chamber enclosing an interior with a fluid inlet, a fluid outlet, and an inside surface. A plurality of surface-attached structures attached to the inside surface at a plurality of respective attachment sites and extending into the interior therefrom. Each surface attached structure comprising a flexible body and a metallic component disposed on or in the flexible body. A driver configured for applying a magnetic or electric field to the interior of the flow cell to actuate movement of the surface-attached structures. Application of the magnetic or electric field actuates the surface-attached structure into movement relative to the corresponding attachment site. The driver is configured for varying a parameter of the magnetic or electric field selected from the group consisting of strength, field direction, frequency cycled between ON and OFF states or high-strength and low-strength states or a combination of two or more of the foregoing.
Abstract:
A cell processing system, fluidics cartridge, and methods for using actuated surface-attached posts for processing cells are disclosed. Particularly, the cell processing system includes a fluidics cartridge and a control instrument. The fluidics cartridge includes a cell processing chamber that has a micropost array therein, a sample reservoir and a wash reservoir that supply the cell processing chamber, and a waste reservoir and an eluent reservoir at the output of the cell processing chamber. A micropost actuation mechanism and a cell counting mechanism are provided in close proximity to the cell processing chamber. A method is provided of using the cell processing system to collect, wash, and recover cells. Another method is provided of using the cell processing system to collect, wash, count, and recover cells at a predetermined cell density.
Abstract:
A flow cell is provided that includes surface- attached structures in a chamber. The structures are movable in response to a magnetic or electric field. A target extraction or isolation system includes the flow cell and a driver configured for applying a magnetic or electric field to the interior of the flow cell to actuate movement of the structures. The flow cell may be utilized to extract or isolate a target from a sample flowing through the flow cell. Further, a microfluidic system is provided that includes surface-attached structures and a microarray, wherein actuated motion of the surface-attached structures is used to enhance flow, circulation, and/or mixing action for analyte capture on the microarray.
Abstract:
Abstract A flow cell based target extraction system comprising a chamber enclosing an interior with a fluid inlet, a fluid outlet, and an inside surface. A plurality of surface-attached structures attached to the inside surface at a plurality of respective attachment sites and extending into the interior therefrom. Each surface attached structure comprising a flexible body and a metallic component disposed on or in the flexible body. A driver configured for applying a magnetic or electric field to the interior of the flow cell to actuate movement of the surface-attached structures. Application of the magnetic or electric field actuates the surface-attached structure into movement relative to the corresponding attachment site. The driver is configured for varying a parameter of the magnetic or electric field selected from the group consisting of strength, field direction, frequency cycled between ON and OFF states or high-strength and low-strength states or a combination of two or more of the foregoing.
Abstract:
Magnetic-based actuation mechanisms for and methods of actuating magnetically responsive microposts in a reaction (or assay) chamber is disclosed. Namely, a microfluidics system is provided that includes a microfluidics device (or cartridge) that includes the reaction (or assay) chamber in which a field of surface-attached magnetically responsive microposts is installed. The presently disclosed magnetic-based actuation mechanisms are provided in close proximity to the magnetically responsive microposts wherein the magnetic-based actuation mechanisms are used for actuating the magnetically responsive microposts. Namely, the magnetic-based actuation mechanisms generate an actuation force that is used to compel at least some of the magnetically responsive microposts to exhibit motion. Additionally, methods of using the presently disclosed magnetic-based actuation mechanisms for actuating the magnetically responsive microposts are provided.
Abstract:
Modular active surface devices for microfluidic systems and methods of making same is disclosed. In one example, the modular active surface device includes an active surface layer mounted atop an active surface substrate, a mask mounted atop the active surface layer wherein the mask defines the area, height, and volume of the reaction chamber, and a substrate mounted atop the mask wherein the substrate provides the facing surface to the active surface layer. In other examples, both facing surfaces of the reaction chamber include active surface layers. Further, the modular active surface device can include other layers, such as, but not limited to, adhesive layers, stiffening layers for facilitating handling, and peel-off sealing layers. Further, a large-scale manufacturing method is provided of mass-producing the modular active surface devices. Further, a method is provided of using a plasma bonding process to bond the active surface layer to the active surface substrate.