Abstract:
A waveform reconstruction device (140) includes: a phase-spectrum calculation unit (143) which (i) simulates, for each intensity of an input optical signal assumed to have a given phase spectrum, propagation of the input optical signal through an optical transmission medium, to calculate a power spectrum of an output optical signal, and (ii) performs iterations of simulating the propagation while changing the given phase spectrum to reduce differences between calculated power spectra and measured power spectra of the input optical signal having the intensities, to search for a phase spectrum of the input optical signal; and a waveform reconstruction unit (144) which reconstructs a time waveform of the input optical signal using the phase spectrum found through the search, wherein the phase-spectrum calculation unit (143) changes the given phase spectrum or simulates the propagation, based on a nonlinear optical effect or a dispersion effect.
Abstract:
A light physical constant measurement method includes: virtually dividing an optical transmission medium along a propagation direction to set a plurality of first segments (S106); and estimating light physical constants of the plurality of first segments based on the result of a first propagation simulation that uses a model in which an input optical signal of each of the plurality of intensities propagates sequentially through the plurality of first segments (S108 to S114), and in the estimating of light physical constants of the plurality of first segments, the light physical constants of the plurality of first segments are searched for using an evaluation function of evaluating a difference between a measured power spectrum of an output optical signal and a power spectrum of the output optical signal obtained as a result of the first propagation simulation, to estimate the light physical constants of the plurality of first segments.
Abstract:
A light wavelength measurement method of measuring a wavelength of target light includes: receiving target light on a second dispersion device that disperses the target light into a plurality of second beams which reach a plurality of positions corresponding to the wavelength of the target light (S106, S202); and measuring the wavelength of the target light, by using the plurality of the second beams as a vernier scale for measuring the wavelength of the target light within a wavelength range specified by a main scale (S108, S204).
Abstract:
To provide an optical gating system capable of performing single-shot, parallel, and ultrafast gating equal to or less than a subpicosecond, without depending on coherence. The optical gating system converts signal light to spatial characteristic signal light whose intensity distribution has spatial periodicity, and emits the spatial characteristic signal light to a gate region (13) so as to be obliquely incident on the gate region (13). In a closed state in an opening and closing operation of the gate region (13), a closed moiré fringe pattern (graph 11) is created in the gate region (13) by overlaying the spatial characteristic signal light and spatial characteristic closed light acting in a direction in which an intensity of the spatial characteristic signal light is decreased in the gate region (13). In an open state, an open moiré fringe pattern (graph 12) is created in the gate region (13) by overlaying the spatial characteristic signal light and spatial characteristic open light acting in a direction in which the intensity of the spatial characteristic signal light is increased in the gate region (13).