Abstract:
The present invention relates to a method for separating at least one soluble protein fraction from an aggregated casein-containing material, the method comprises the steps of: (i) providing the aggregated casein-containing material; (ii) Contacting the aggregated casein-containing material with a chromatographic support allowing one or more soluble protein(s) present in the aggregated casein-containing material to be retained by the chromatographic support; (iii) Obtaining a permeate fraction from the chromatographic support comprising aggregated casein; (iv) Optionally washing the chromatographic support; (v) Subjecting the chromatographic support to at least one elution buffer obtaining at least one soluble protein fraction from the chromatographic support; and wherein the chromatographic support comprises one or more mixed-mode ligands capable of binding the soluble proteins from the aggregated casein-containing material.
Abstract:
The present invention relates to a method for providing an alpha-lactalbumin fraction and a beta-lactoglobulin fraction from a whey material obtained from milk, the method comprising the steps of: (i) providing the whey material; (ii) contacting the whey material with a chromatographic support allowing beta-lactoglobulin to be retained by the chromatographic support; (iii) obtaining a permeate fraction from the chromatographic support comprising the alpha-lactalbumin fraction; (iv) optionally washing the chromatographic support; and (v) obtaining a retentate fraction from the chromatographic support comprising the beta-lactoglobulin fraction; wherein the whey material provided in step (i) has been depleted, or substantially depleted from at least one whey protein, such as at least 2 whey proteins, e.g. at least 3 whey proteins.
Abstract:
The invention provides a process for the separation of soy protein. The process begins with an aqueous extract or solution of soy protein, which is passed through at least one expanded bed absorption (EBA) process. The EBA process comprises contacting the aqueous extract or solution of soy protein with at least one adsorbent resin, said adsorbent resin comprising at least one ligand (L1 or L2), having particular chemical structures. Proteins of interest (e.g. trypsin inhibitor (TI) protein or beta-conglycinin) are isolated by eluting them from said adsorbent resin. The invention also provides various novel protein compositions obtainable via the method of the invention.
Abstract:
The present invention relates to a method for producing beads comprising a material capable of gelation, said method comprising the steps of: (i) combining (a) a liquid composition comprising a material capable of gelation; and (b) a first hydrophobic phase; (ii) subjecting the liquid composition and the first hydrophobic phase, to means for emulsification in a first reactor by addition of external mechanical energy creating an emulsion comprising individual droplets comprising the material capable of gelation in the first hydrophobic phase (wherein the material capable of gelation provides a discontinuous phase and the first hydrophobic phase provides a continuous phase); (iii) stabilising the droplets by transferring the emulsion from the first reactor to a stabilisation reactor wherein the emulsion obtained in step (ii) is subjected to means for gelation in order to obtain gelation within 5 minutes or less, and the beads are formed.
Abstract:
The present invention relates to isolation of whey proteins and the preparation of a whey product and a whey isolate. In particular the present invention relates to the isolation of a β-lactoglobulin product and the isolation of an α-enriched whey protein isolate from whey obtained from an animal. The α-enriched whey protein isolate provided by the present invention is besides from being low in β- lactoglobulin also high in α-lactalbumin and immunoglobulin G.
Abstract:
The invention provides a process for the separation of soy protein. The process begins with an aqueous extract or solution of soy protein, which is passed through at least one expanded bed absorption (EBA) process. The EBA process comprises contacting the aqueous extract or solution of soy protein with at least one adsorbent resin, said adsorbent resin comprising at least one ligand (L1 or L2), having particular chemical structures. Proteins of interest (e.g. trypsin inhibitor (TI) protein or beta-conglycinin) are isolated by eluting them from said adsorbent resin. The invention also provides various novel protein compositions obtainable via the method of the invention.
Abstract:
The present invention relates to isolation of whey proteins and the preparation of a whey product and a whey isolate. In particular the present invention relates to the isolation of a β-lactoglobulin product and the isolation of an α-enriched whey protein isolate from whey obtained from an animal. The α-enriched whey protein isolate provided by the present invention is besides from being low in β- lactoglobulin also high in α-lactalbumin and immunoglobulin G.
Abstract:
The present invention relates to a method for separating at least one soluble protein fraction from an aggregated casein-containing material, the method comprises the steps of: (i) providing the aggregated casein-containing material; (ii) Contacting the aggregated casein-containing material with a chromatographic support allowing one or more soluble protein(s) present in the aggregated casein-containing material to be retained by the chromatographic support; (iii) Obtaining a permeate fraction from the chromatographic support comprising aggregated casein; (iv) Optionally washing the chromatographic support; (v) Subjecting the chromatographic support to at least one elution buffer obtaining at least one soluble protein fraction from the chromatographic support; and wherein the chromatographic support comprises one or more mixed-mode ligands capable of binding the soluble proteins from the aggregated casein-containing material.