Abstract:
The invention relates to a sensor structure and a method. The sensor structure includes a first sensor having a sensing element sensitive to humidity of the environment. In accordance with the invention the sensor structure also includes s second sensor having a sensing element sensitive to humidity, the second sensor comprising a catalytic permeable layer positioned on the second sensor such that it is between the sensing element of the second sensor and the environment.
Abstract:
The present invention concerns a method and system for gas concentration measurement of gas or gas mixtures dissolved in liquids. A gas or gas mixture dissolved in a liquid sample is extracted from the liquid sample using an extraction system and conducted into a measurement chamber. Then a measurement signal is generated by means of a radiant source and the measurement signal is directed to a measurement object in a measurement chamber containing the gas or gas mixture to be measured. The measurement signal is filtered using at least two wavelengths, whereupon the filtering is preferably implemented by means of an electrically tunable, short-resonator Fabry-Perot interferometer. Then the filtered measurement signals are detected my means of a detector.
Abstract:
The invention relates to a NMR method for determining moisture content of a sample, in which method a sample is subjected to a magnetic DC-field, the sample under magnetic DC-field is subjected to a sequence of excitation pulses in RF-frequency with pulse interval for exciting hydrogen nuclei, and NMR signal of the excited hydrogen nuclei is measured. In accordance with the invention spin-lattice relaxation time is estimated for the sample, and pulse interval is adjusted longer than the estimated spin-lattice relaxation time.
Abstract:
The present invention concerns asystem (1) for extracting gas or gas mixtures from a liquid for performing dissolved gas or gas mixture analysis, the system (1) comprising a container (2) for storing a liquid and/or a gas or gas mixture, a liquid pump (3) which is connected to the container (2), a means for feeding the system (1) with a liquid and emptying the system (1) of the liquid, a gas analyzer which is connected to the container (2), and a piping (14) which is connected to the container (2), and wherein the piping (14), the liquid pump (3) and the container (2) are configured to circulate the liquid. The invention also concerns a method for extracting gas or gas mixtures from a liquid for performing dissolved gas or gas mixture analysis.
Abstract:
A Nuclear Magnetic Resonance (NMR) apparatus and method for measuring the water content of samples has a device to produce a main magnetic field; a sample receiving space within a main magnetic field; a device to excite a measurable RF magnetization to a sample placed into the sample receiving space at an operating frequency defined by the main magnetic field; a device to measure the RF signal produced by the excited sample; and a device to determine the water content in the sample based on the RF signal. The sample receiving space is capable of accommodating a sample having a volume of at least 0.5 dm3, and the device to produce a main magnetic field has a resistive electromagnet which is adapted to produce a main magnetic field corresponding to an operating frequency of 400-2000 kHz.
Abstract:
The present invention concerns asystem (1) for extracting gas or gas mixtures from a liquid for performing dissolved gas or gas mixture analysis, the system (1) comprising a container (2) for storing a liquid and/or a gas or gas mixture, a liquid pump (3) which is connected to the container (2), a means for feeding the system (1) with a liquid and emptying the system (1) of the liquid, a gas analyzer which is connected to the container (2), and a piping (14) which is connected to the container (2), and wherein the piping (14), the liquid pump (3) and the container (2) are configured to circulate the liquid. The invention also concerns a method for extracting gas or gas mixtures from a liquid for performing dissolved gas or gas mixture analysis.