Abstract:
An ultrasonic oscillator (46) drives a tool at a set frequency. An amplitude control runs the oscillator (46) to set the vibration level. A frequency regulator joins the amplitude and the oscillator (46). A control feedback loop (49), in the frequency regulator, keeps handpiece linear dynamics. An operational transconductance amplifier (52), in the oscillator (46), governs gain of the loop (49). A circuit (55) connects to the control to retard the rate of current application over time to the amplifier (52). The circuit (55) has switching to either retard the rate or reset for start up. The amplifier (54) is a current output device with current directly proportional to the bias current and input voltage with bias as gain change for the loop (49). The circuit (55) limits the bias to the amplifier (54) to modify frequency response and output current. A capacitor delays application of the bias to the amplifier (54). Replaceable tools of various lengths or shapes positioned along an axis vibrate for surgery at the frequency and a wave length. Tools longer than one wavelength and of configurations tuned to oscillate around the frequency resonate as a function of their material, length and configuration. A flue (17) surrounds the tool and has a hollow elongate semi rigid central body (28) about an axis with a funnel (29), at one end thereof and a nozzle (30), at the other to direct annular irrigant/coolant flow therethrough. The funnel (29) and nozzle (30) are resilient. Reinforcing ridges (32), inside the nozzle (30), act to maintain concentricity between the flue (17) and nozzle tip and channel irrigant thereabout.
Abstract:
An electrosurgical tubular trocar system (10) has a hollow tube (13) substantially longer than its diameter. The tube (13) is shaped for insertion in a direction generally along its axis through tissue of a human or animal body. Distal and proximal ends (17 and 18) on the tube (13) enter and remain outside the tissue, respectively. A tip (19) on the distal end (17) punctures tissue of a human or animal. An insulating portion (20) of high dielectric material extends along the tube (13) between the distal and proximal ends (17 and 18). An electrode (14) on the insulating portion (20) extends from the proximal end (18) to the tip (19) to transmit radio frequency energy. A tip point (19) at an acute angle to the axis lessens the initial force necessary for entry of the tube (13). The return path (16) is a conductor (23) on the insulating portion (20) for bipolar cutting across a gap (25). An alternate system may have the return path (16) as a conductive pad (15) in contact with the tissue as a monopolar circuit. The tube (13) may be in fluid communication for flow.
Abstract:
An electrosurgical generator (10) has an improved design for generating output waveforms using a microprocessor (15). The waveforms are generated in the form of a serial digital output from the microprocessor (15). The serial digital output is transformed into an electrosurgical RF output in an amplifier stage. The improved design also includes a monitoring circuit to continuously monitor the serial digital output by time-averaging the output, and then comparing that value with a threshold. The electrosurgical generator (10) comprises a microprocessor (15), an algorithm in the microprocessor (15) capable of toggling an output port of the microprocessor (15), an output amplifier (16), an adjustable high voltage DC power supply (17), a patient circuit including an active electrode (12) and a return electrode (13). The electrosurgical generator (10) may further comprise a mode selector (20) for selecting one of a plurality of pulse patterns in the serial digital output, and a plurality of command sequences in the algorithm, where each command sequence is designed to produce one of the plurality of patterns. There may also be a tank damp circuit (22) for reducing the amplitude of voltage spikes in the electrosurgical output, and a pulse suppression circuit. The monitoring circuit comprises a low pass filter (19) and a comparator to verify operation of the waveform generator.
Abstract:
An ultrasonic oscillator drives a tool at a set frequency. An amplitude control (47) runs the oscillator to set the vibration level. A frequency regulator (48) joins the amplitude and the oscillator. A handpiece supports a tranducer and a vibrating tool. A flue (17) surrounds the tool. Electrodes (42) associated with the flue (17) and/or the tool extend to be at or near the distal tip (18) of the tool and/or the flue (17) and provide bipolar electrosurgery with or without ultrasonic vibration of the tool. A method of performing ultrasonic surgery and bipolar electrosurgery has an ultrasonic handpiece with bipolar electrodes (42) associated with the tool or the flue (17).
Abstract:
In an ESV a control system responds to impedance and temperature as sensed between and at the electrodes (13) during desiccation each of such electrodes being provided separately and independently through a suitable multiplexer with a specifically controlled RF power. An instantaneous impedance monitor senses impedance variations and controls by means of specific derivative sensitive algorithm part of a feedback loop, the output power delivered through each electrode. A further temperature dependent feedback loop power control system is operative in a multiplexed mode in pair with the above impedance feedback system. Such second system uses an array of temperature sensors placed in the immediate proximity of the each tissue contacting electrode, and an appropriate derivative sensitive algorithm. Both systems are operated in a multiplex mode through a first multiplexer. A second multiplexer shifts the output power to the various electrodes independently and separately.
Abstract:
In an ESV a control system responds to impedance and temperature as sensed between and at the electrodes (13) during desiccation each of such electrodes being provided separately and independently through a suitable multiplexer with a specifically controlled RF power. An instantaneous impedance monitor senses impedance variations and controls by means of specific derivative sensitive algorithm part of a feedback loop, the output power delivered through each electrode. A further temperature dependent feedback loop power control system is operative in a multiplexed mode in pair with the above impedance feedback system. Such second system uses an array of temperature sensors placed in the immediate proximity of the each tissue contacting electrode, and an appropriate derivative sensitive algorithm. Both systems are operated in a multiplex mode through a first multiplexer. A second multiplexer shifts the output power to the various electrodes independently and separately.
Abstract:
A constant power control circuit (107) for an electrosurgical generator (101) and a method for maintaining the electrical power output of an electrosurgical generator (101) at a generally constant value throughout a given tissue impedance range are disclosed. The constant power control circuit (107) and the method recognize and use the unique and simple linear characteristics associated with certain electrosurgical generator (101) designs to monitor and control the electrical power output without having to calculate or monitor the actual output power. The constant power control circuit (107) includes a current sampling circuit (115), a linear conversion circuit (117), and a feedback correction circuit (119). The constant power control circuit (107) may also include protection circuitry that prevents the electrosurgical generator (101) from being over-driven during high and/or low impedance loading (121), and reduces the severity of exit sparking by providing a quick response to high impedance indications while nonetheless maintaining increased power levels throughout a preset, nominal impedance range. The constant power control circuit (107) and method may be included as an integral part of the overall electrosurgical generator's (101) circuitry, or may be embodied as a separate unit that connects to, and controls, an electrosurgical generator (101). The constant power control circuit (107) and method may be embodied through a variety of analog and/or digital circuit components or arrangements, including software running on computational and memory circuitry.
Abstract:
A power control system for an electrosurgical generator (11) will control the output power to desired levels. The power control system uses a simple closed-loop control algorithm. Sensors in the electrosurgical generator (11) will monitor changes in output current and output voltage. There may also be sensors to monitor changes in the temperature of the electrosurgical tool, mechanical strain in the electrosurgical tool, or phase shift between output voltage and output current. A microprocessor (19) in the electrosurgical generator (11) is connected to the sensors and repetitively compares the sensed values against their respective threshold values. The threshold values are computed by the microprocessor (19) based on the desired output power, or other desired tissue effects. The microprocessor (19) also has an output to control an adjustable high voltage power supply (15) in the electrosurgical generator (11). The microprocessor (19) will adjust the high voltage power supply (15) to maintain all sensed values below their respective threshold values. The threshold values are computed by the microprocessor (19) based on the desired output power, or other desired tissue effects. The threshold values may also be computed as a function of the impedance of the output load on the electrosurgical generator (11).
Abstract:
An electrosurgical generator (11) control responds to tissue impedance between active and return electrodes (12 and 13) during desiccation. Active and return generator leads supply energy (25) and a user control (16) sets the level of energy (25) desired for electrosurgery. Voltage and current sensing circuits (19) respond to high frequency energy (25) in the leads to signal voltage and current in the leads. A multiplier (21) receives the signals to calculate power. A clock (23) sets units of time during which power calculation. An integrator (24) calculates the energy (25) supplied through the leads per time unit. The user control (16) sets a reference signal (26) for the energy (25) level desired. A correlation circuit (27) receives the energy (30) calculations from the integrator (24) and the reference signal (26) and provides a feedback signal (28) to indicate when the energy (25) calculation equals the user control (16) setting for altering the generator supply of energy (25) to the leads. A counter (38) assesses the number of packets of energy (40) delivered against a setting of the user control (16) and the total energy (25) delivered is a function of multiple packet sequences containing pulses wherein the time between the pulses is controlled by the user control (16). The method uses the automatic control (10) in measuring impedance during tissue desiccation and altering the output of an electrosurgical generator (11).