Abstract:
A yaw sensor for a wind turbine is described. The yaw sensor comprises a rotary switch, configured to be coupled to a yaw drive gearbox of a wind turbine nacelle, the rotary switch being operable to activate and deactivate an electrical contact in dependence on an amount of yaw rotation of the nacelle relative to a start position. The electrical contact is active at a plurality of first yaw rotation ranges with respect to the start position, and inactive at a plurality of second yaw rotation ranges with respect to the start position, the first and second yaw rotation ranges being interleaved, at least some of the first yaw rotation ranges having different lengths from each other and/or at least some of the second yaw rotation ranges having different lengths from each other. The electrical contact generates an electrical signal when active.
Abstract:
A method of determining torsional deformation in a drivetrain e.g. of a wind turbine. To provide a reliable and simple deformation assessment, the method comprises the step of generating a first signal representing first rotational speed of a low speed shaft, generating a second signal representing the second rotational speed of a high speed shaft, and determining torsional deformation based on changes in the ratio between the first and second signals.
Abstract:
A yaw sensor for a wind turbine is described. The yaw sensor comprises a rotary switch, configured to be coupled to a yaw drive gearbox of a wind turbine nacelle, the rotary switch being operable to activate and deactivate an electrical contact in dependence on an amount of yaw rotation of the nacelle relative to a start position. The electrical contact is active at a plurality of first yaw rotation ranges with respect to the start position, and inactive at a plurality of second yaw rotation ranges with respect to the start position, the first and second yaw rotation ranges being interleaved, at least some of the first yaw rotation ranges having different lengths from each other and/or at least some of the second yaw rotation ranges having different lengths from each other. The electrical contact generates an electrical signal when active.
Abstract:
A method of determining torsional deformation in a drivetrain e.g. of a wind turbine. To provide a reliable and simple deformation assessment, the method comprises the step of generating a first signal representing first rotational speed of a low speed shaft, generating a second signal representing the second rotational speed of a high speed shaft, and determining torsional deformation based on changes in the ratio between the first and second signals.