Abstract:
Wind turbine pitch actuator mounting structure A mounting structure is described for attaching a pitch actuator to a hub of a wind turbine. The mounting structure has one or more legs each having a proximal end and a distal end, and a flexible intermediate portion between the proximal and distal ends. The mounting structure further comprises an actuator attachment portion for attaching to a wind turbine blade pitch actuator. The actuator attachment portion is arranged at the distal end(s) of the one or more legs. The proximal end(s) of the one or more legs are configured for attachment to a wind turbine hub. The flexible intermediate portion(s) of the one or more legs are configured to flex in use to absorb loads acting on the pitch actuator. The mounting structure therefore allows the pitch actuator to pivot in a first plane by virtue of the flexible legs. The pitch actuator may be attached to the mounting structure via pivot bearings arranged to allow the pitch actuator to pivot in a second plane, substantially perpendicular to the first plane.
Abstract:
There is provided a method for controlling a hydraulic pitch force system (220) so as to reduce or eliminate a decrease in hydraulic oil pressure (241) if a hydraulic system parameter value is outside a hydraulic system parameter range, the method comprising: Obtaining (690) the hydraulic system parameter value, and operating the hydraulic pitch force system (220) according to a reduced mode (692) if the hydraulic system parameter value is outside the hydraulic system parameter range, wherein in the reduced mode one or more pitch based activities are reduced (694) or suspended. An advantage thereof may be that it enables keeping the wind turbine in production in certain instances rather than shutting down the wind turbine. In aspects, there is furthermore presented a computer program product, a pitch control system (250) and a wind turbine (100).
Abstract:
A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighbouring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained. The invention further provides a wind turbine (1) comprising such a generator (5) and a method for performing service on a generator (5).
Abstract:
Systems, methods, and computer program products for monitoring a wind turbine (10). The system receives a signal (426) indicative of a pitch force being applied to a blade (20) of a wind turbine (10). The signal (426) is sampled to generate a discrete time-domain signal (426) including a plurality of pitch force samples. Samples are selected for analysis using a sampling window (326) that excludes samples obtained under operating conditions determined to be detrimental to obtaining good data. The selected samples are processed to generate a spectral density (150) of the signal (426), and the frequency content of the spectral density (150) analysed to determine the condition of one or more components of the wind turbine (10). If the analysis indicates that a component of the wind turbine (10) needs attention, the system generates an alarm.
Abstract:
A nacelle (2) for a wind turbine (1) and a method for erecting a wind turbine (1) are disclosed. The nacelle (2) comprises a main unit (8) arranged to be connected to a wind turbine tower (3), via a yawing arrangement, and at least one side unit (9a, 9b, 9c, 9d) mounted along a side of the main unit (8) in such a manner that direct access is allowed between the main unit (8) and the side unit(s) (9a, 9b, 9c, 9d), each side unit (9a, 9b, 9c, 9d) accommodating at least one wind turbine component (13, 14, 15, 16, 17), and at least one side unit (9a, 9b, 9c, 9d) being capable of carrying the wind turbine component(s) (13, 4, 15, 16, 17) accommodated therein. The main unit (8) and at least one of the side unit(s) (9a, 9b, 9c, 9d) are distributed side by side along a substantially horizontal direction which is substantially transverse to a rotational axis of a rotor of the wind turbine (1). A sufficient interior space of the nacelle (2) is obtained while allowing the nacelle (2) to be transported due to the modular construction. The weight of the wind turbine components (13, 14, 15, 16, 17) is arranged close to the tower (3) due to the transversal arrangement of the side unit(s) (9a, 9b, 9c, 9d) relative to the main unit (8).
Abstract:
Wind turbine pitch actuator mounting structure A mounting structure is described for attaching a pitch actuator to a hub of a wind turbine. The mounting structure has one or more legs each having a proximal end and a distal end, and a flexible intermediate portion between the proximal and distal ends. The mounting structure further comprises an actuator attachment portion for attaching to a wind turbine blade pitch actuator. The actuator attachment portion is arranged at the distal end(s) of the one or more legs. The proximal end(s) of the one or more legs are configured for attachment to a wind turbine hub. The flexible intermediate portion(s) of the one or more legs are configured to flex in use to absorb loads acting on the pitch actuator. The mounting structure therefore allows the pitch actuator to pivot in a first plane by virtue of the flexible legs. The pitch actuator may be attached to the mounting structure via pivot bearings arranged to allow the pitch actuator to pivot in a second plane, substantially perpendicular to the first plane.
Abstract:
A generator (5) for a wind turbine (1) and a wind turbine (1) are disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3), each stator (4) comprising at least one flux-generating module (9) facing the rotor (3) but spaced therefrom. The flux-generating module(s) (9) is/are mounted on a stator support structure (7, 10). The stator support structure (7, 10) defines a preloaded spring force acting against magnetic forces occurring between the rotor (3) and the flux-generating module(s) (9) during operation of the generator (5). The preloaded spring force is adjustable, e.g. by means of a piston arrangement (17). Thereby it is possible to maintain a preloaded spring force which is capable of acting against the magnetic forces occurring between the rotor (3) and the flux-generating module(s) (9), even if operating conditions are changed. Furthermore, the preloaded spring force may be adjusted to compensate for inaccuracies originating from production tolerances of the stator support structure (7, 10). A uniform and constant air gap can thereby be maintained between the rotor (3) and the flux-generating module(s) (9).
Abstract:
A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby forming an air gap between the rotor (3) and each flux-generating module (9). Each stator (4) also comprises at least one bearing unit (12), each bearing unit (12) comprising a body (16) defining a cavity (14) with an open end facing the rotor (3). The generator (5) further comprises a source of pressurized fluid communicating with each bearing unit (12), and the body (16) of each bearing unit (12) directs the fluid towards the rotor (3) to help maintain the air gap between the rotor (3) and each flux-generating module (9). Thereby the air gap between the rotor (3) and the flux-generating modules (9) is controlled by means of the fluid bearing units (12). The invention further provides a wind turbine (1) comprising such a generator (5).
Abstract:
A generator (5) for a wind turbine (1) and a wind turbine (1) are disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3), each stator (4) comprising at least one flux-generating module (9) facing the rotor (3) but spaced therefrom. The flux-generating module(s) (9) is/are mounted on a stator support structure (7, 10). The stator support structure (7, 10) defines a pre-loaded spring force acting against magnetic forces occurring between the rotor (3) and the flux-generating module(s) (9) during operation of the generator (5). The preloaded spring force is adjustable, e.g. by means of a piston arrangement (17). Thereby it is possible to maintain a preloaded spring force which is capable of acting against the magnetic forces occurring between the rotor (3) and the flux-generating module(s) (9), even if operating conditions are changed. Furthermore, the preloaded spring force may be adjusted to compensate for inaccuracies originating from production tolerances of the stator support structure (7, 10). A uniform and constant air gap can thereby be maintained between the rotor (3) and the flux-generating module(s) (9).