Abstract:
The present invention relates to a connection system for connecting a power generator to a DC electrical power system, with a controllable voltage source unit functionally connected in series with the power generator to receive AC electrical power from the power generator, and to generate an AC electrical power output accordingly, and a rectifier arranged to receive AC electrical power output from said voltage source unit and to rectify the AC electrical power output to a DC electrical power to be provided to the DC electrical power system. The invention also relates to method for connecting a power generator to a DC electrical power system.
Abstract:
The present invention relates to a high-voltage power converter comprising a number of controllable switching valves, each switching valve comprising a plurality of series connected switching units, the high-voltage power converter further comprising a resonance circuit comprising a link inductor and a link capacitor, and a plurality of clamping circuits connected in series, each clamping circuit comprising a clamping capacitor and a clamping switching unit.
Abstract:
A conventional cable 1 comprises three conductive cores 2a, 2b, 2c, each provided with a respective conductive sheath 3a, 3b, 3c, which are together housed within an outer insulating sheath. The three-core cable 1 is used to transmit electric power in the form of dc current and single-phase ac current. A first one of the conductive cores 2a is used to transmit dc current, while a second conductive core 2b is used to transmit the return dc current. The third conductive core 2c is used to transmit the single-phase ac current. The return ac current is transmitted along all three conductive outer sheaths 3a, 3b, 3c in parallel. The cable is used to transmit dc current from a wind turbine generator to a substation where it is converted to ac before connecting to the mains electricity grid. The ac current is used to power auxiliary circuitry of the wind turbine generator 5 when the output of the turbine generator 5 falls below a give value.
Abstract:
The present invention relates to method for operating a power plant, with at least one wind turbine generator arranged for supplying power to an electrical grid, at least one energy storage device arranged for supplying power to the electrical grid, and a power plant controller, the method comprises, measuring repetitively measurement sets of at least one electrical parameter from the electrical grid, and calculating, in respect the measurement sets of the at least one electrical parameter, a change in active and/or a required change in reactive power at a point of common coupling, and calculating and dispatching of a first control reference signal to the at least one wind turbine generator and a second control reference signal to the at least one energy storage device,for providing ancillary service functionalities to the electrical grid. The invention also relates to a power plant with at least one wind turbine generator for supplying power to an electrical grid, at least one energy storage device for supplying power to the electrical grid, and a power plant controller for providing ancillary service functionalities to the electrical grid.
Abstract:
A method of operating a power generating system for a wind turbine connected to an electrical grid, the power generating system comprising a power generator, a converter, a transformer and a tap changer, the method comprising; when operating the power generating system in a grid-forming configuration, monitoring a signal for detecting a voltage of the electrical grid which requires an increase in output voltage from the power generating system in order to maintain the grid voltage within a predetermined voltage range; and operating the tap changer to tap-up the transformer to provide at least part of the voltage increase required to maintain the grid voltage within the predetermined voltage range.
Abstract:
Aspects of the present disclosure are generally directed to a multi-rotor turbine having with a common line-side converter (LSC) (DC to AC converter) for each of a plurality of machine-side converters (AC to DC converters). For example, the multi- rotor turbine may include a plurality of machine-side converters (MSC), each configured to receive an alternating current (AC) input signal from one of a plurality of rotors of the multi-rotor turbine and generate a DC signal based on the input AC signal. The multi-rotor turbine may also include a line-side converter (LSC) configured to receive the DC signals from each of the plurality of MSCs and generate an output AC signal based on the DC signals.
Abstract:
A wind turbine power generation system comprising a rotor shaft coupled to an electrical generator which generates a power output at a first AC voltage level; a converter system that converts the power output of the generator at the first AC voltage level to a converter power output at a second AC voltage level; a transformer that converts the converter system power output at the second AC voltage level to a generation system power output at a third AC voltage level; wherein the converter system comprises a machine-side converter, a line-side converter and a DC-link. The machine-side converter is a line-commutated rectifier, and the transformer is an online tap changer transformer. In another aspect, the invention resides in a wind power plant comprising at least one wind power generation system electrically coupled to a substation for onward transmission to a grid. The substation includes a point of common connection to which the one or more power generation systems electrically connected, and a transformer, wherein the transformer is an online tap changer transformer.
Abstract:
The present invention relates to a fault-tolerant control system for a wind turbine comprising a plurality of controllable wind turbine components, the control system comprising control means for generating a replica of essentially concurrent set-point values, a data communication network for transmitting the replica of essentially concurrent set-point values to the plurality of wind turbine components, and a plurality of decentralised voting means being arranged so that a decentralised voting means is assigned to each wind turbine component, each decentralised voting means being adapted to select one set-point value out of the replica of set-point values. The present invention further relates to a wind turbine and to an associated method.
Abstract:
The present invention relates to a reconfigurable power converter module for a wind turbine facility adapted to supply electric power to an associated power supply grid. The reconfigurable power converter module comprises a frequency converter operatively connected to filter means, wherein said frequency converter and said filter means are mutually reconfigurable so as to suppress internal and/or internal resonances/harmonics.
Abstract:
An off-grid wind turbine system comprising a wind turbine with an electric generator (G) for generating an initial electric power output (AC). An electrolyzer system with a hydrogen electrolyzer (ELT) located inside the nacelle or tower of the wind turbine, so as to generate hydrogen (H) by an electrolysis process. An electric converter system (CNV) serves to convert the initial electric power output (AC) into a DC electric power output (DC) dedicated for powering the electrolyzer (ELT). The produced hydrogen (H) is stored in a hydrogen storage tank (HTK), e.g. located adjacent to the wind turbine. Modules each comprising a converter and an electrolyzer may be stacked to provide the necessary capacity. In some embodiment, a synchronous generator excited by an external exciter (EXC) is used, and in some embodiments a hydraulic torque converter (HTC) is used. In some embodiments an AC to DC converter system involving transformer is used, while in other embodiments an intermediate DC to DC converter is used. By placing the electrolyzer (ELT) inside the wind turbine, a dedicated and compact wind turbine is provided which allows a rather simple and low cost wind turbine especially suited for storing energy in the form of hydrogen based on wind.