Abstract:
A conductive, moldable composite material for the manufacture of electrochemical cell components comprising a thermosetting resin system and conductive filler wherein the thermosetting resin composition comprises: (1) a polybutadiene or polyisoprene resin; (2) an optional functionalized liquid polybutadiene or polyisoprene resin; (3) an optional butadiene- or isoprene-containing copolymer; and (4) an optional low molecular weight polymer. In a preferred embodiment, the conductive moldable composite material is used to form a bipolar plate, current collector or other electrochemical cell component. Articles made of the conductive moldable composite material are resistant to chemical attack and hydrolysis, have excellent mechanical strength and toughness, have a volume resistivity of about 0.116 ohm-cm or less and preferably about 0.04 ohm-cm or less and a thermal conductivity of at least about 5 watts/meter ° K.
Abstract:
A component for an electrochemical cell comprises a thermally and electrically conductive core with an active area substantially covered by an electrically and thermally conductive polymeric composite, wherein the conductive polymeric composite is adhered to the core by an adhesion promoter. The electrically conductive polymeric composite preferably comprises a thermosetting polybutadiene-or polyisoprene- based resin system and an electrically conductive filler. The component is resistant to chemical attack and hydrolysis, and has excellent mechanical strength and toughness. Components may be manufactured having a volume resistivity of about 0.500 ohm-cm or less and a thermal conductivity of at least about 5 watts/meter {K.,. In addition, the component is economical to produce due to inexpensive starting materials as well as the use of conventional processing equipment.
Abstract:
A conductive, moldable composite material for the manufacture of electrochemical cell components comprising a thermosetting resin system and conductive filler wherein the thermosetting resin composition comprises: (1) a polybutadiene or polyisoprene resin; (2) an optional functionalized liquid polybutadiene or polyisoprene resin; (3) an optional butadiene- or isoprene-containing copolymer; and (4) an optional low molecular weight polymer. In a preferred embodiment, the conductive moldable composite material is used to form a bipolar plate, current collector or other electrochemical cell component. Articles made of the conductive moldable composite material are resistant to chemical attack and hydrolysis, have excellent mechanical strength and toughness, have a volume resistivity of about 0.116 ohm-cm or less and preferably about 0.04 ohm-cm or less and a thermal conductivity of at least about 5 watts/meter ° K.
Abstract:
A component for an electrochemical cell comprises a thermally and electrically conductive core with an active area substantially covered by an electrically and thermally conductive polymeric composite, wherein the conductive polymeric composite is adhered to the core by an adhesion promoter. The electrically conductive polymeric composite preferably comprises a thermosetting polybutadiene- or polyisoprene-based resin system and an electrically conductive filler. The component is resistant to chemical attack and hydrolysis, and has excellent mechanical strength and toughness. Components may be manufactured having a volume resistivity of about 0.500 ohm-cm or less and a thermal conductivity of at least about 5 watts/meter ° K,. In addition, the component is economical to produce due to inexpensive starting materials as well as the use of conventional processing equipment.
Abstract:
A conductive, moldable composite material for the manufacture of electrochemical cell components comprising a thermosetting resin system and conductive filler wherein the thermosetting resin composittion comprises: (1) a polybutadiene or polyisoprene resin; (2) an optional functionalized liquid polybutadiene or polyisoprene resin; (3) an optional butadiene- or isoprene-containing copolymer; and (4) an optional low molecular weight polymer. In a preferred embodiment, the conductive moldable composite material is used to form a bipolar plate, current collector or other electrochemical cell component. Articles made of the conductive moldable composite material are resistant to chemical attack and hydrolysis, have excellent mechanical strength and toughness, have a volume resistivity of about 1.006 ohm-cm or less and preferably about 0.04 ohm-cm or less and a thermal conductivity of at least about 5 watts/meter {K.
Abstract:
A conductive, moldable composite material for the manufacture of electrochemical cell components comprising a thermosetting resin system and conductive filler wherein the thermosetting resin composition comprises: (1) a polybutadiene or polyisoprene resin; (2) an optional functionalized liquid polybutadiene or polyisoprene resin; (3) an optional butadiene- or isoprene-containing copolymer; and (4) an optional low molecular weight polymer. In a preferred embodiment, the conductive moldable composite material is used to form a bipolar plate, current collector or other electrochemical cell component. Articles made of the conductive moldable composite material are resistant to chemical attack and hydrolysis, have excellent mechanical strength and toughness, have a volume resistivity of about 0.116 ohm-cm or less and preferably about 0.04 ohm-cm or less and a thermal conductivity of at least about 5 watts/meter ° K.
Abstract:
Articles are formed from a thermosetting composition based on polybutadiene or polyisoprene resins which are subjected to a high temperature cure step of greater than 250° C. The thermosetting compositions may include fillers such as particulate ceramic fillers and may also include woven webs for improved dimensional stability and decreased brittleness. The formation process of this invention is particularly well suited for making electrical circuit substrates for microwave and digital circuits, typically in the form of the thermosetting composition being laminated on one or both opposed surfaces to metal conductive foil (e.g., copper). The compositions find particular utility for encapsulating and electrically insulating electrical resistance heating elements for use with fluids.
Abstract:
A conductive, moldable composite material for the manufacture of electrochemical cell components comprising a thermosetting resin system and conductive filler wherein the thermosetting resin composittion comprises: (1) a polybutadiene or polyisoprene resin; (2) an optional functionalized liquid polybutadiene or polyisoprene resin; (3) an optional butadiene- or isoprene-containing copolymer; and (4) an optional low molecular weight polymer. In a preferred embodiment, the conductive moldable composite material is used to form a bipolar plate, current collector or other electrochemical cell component. Articles made of the conductive moldable composite material are resistant to chemical attack and hydrolysis, have excellent mechanical strength and toughness, have a volume resistivity of about 1.006 ohm-cm or less and preferably about 0.04 ohm-cm or less and a thermal conductivity of at least about 5 watts/meter DEG K.
Abstract:
Articles are formed from a thermosetting composition based on polybutadiene or polyisoprene resins which are subjected to a high temperature cure step of greater than 250 DEG C. The thermosetting compositions may include fillers such as particulate ceramic fillers and may also include woven webs for improved dimensional stability and decreased brittleness. The formation process of this invention is particularly well suited for making electrical circuit substrates for microwave and digital circuits, typically in the form of the thermosetting composition being laminated on one or both opposed surfaces to metal conductive foil (e.g., copper). The compositions find particular utility for encapsulating and electrically insulating electrical resistance heating elements for use with fluids.