Abstract:
A micromachined, monolithic silicon vane-type flow meter (20) includes a vane (28) from which inwardly projects a hinge. The hinge is provided with torsion bars (24). The hinge supports a vane (28) for rotation about the torsion bars (24). A deflection sensing means, consisting of a torsion sensor (42) incorporated into at least one of the torsion bars (24), senses deflection of the vane (28) responsive to fluid impinging thereupon. The frame (22), the torsion bars (24) and the torsion sensor (42) are all monolithically fabricated in a semiconductor single-crystal silicon layer of a substrate.
Abstract:
A beam (38) of electromagnetic radiation deflected by a moving mirror plate (56) of a micromachined scanner (54) produces a two dimensional ("2D") raster (132) on a scanned surface (28) of a block (34). The block (34) is transparent to electro-magnetic radiation of pre-established wavelengths. A radiation inlet-face (36) of the block (34) admits the beam (38) that then inpinges on the scanned surface (28) to exit the block (34) through a radiation outlet-face (42). After exiting the block (34), the beam (38) inpinges upon a radiation detector (142). Total internal reflection ("TIR") of the beam (38) from the scanned surface (28) at fingerprint valleys and frustration of TIR at fingerprint ridges causes the radiation detector (142) to produce a time-varying electrical signal that represents the fingerprint. The scanned surface (28) may be formed by a patch (302) of resilient material, that may be tinted to be transparent only at the pre-established wavelength of the electro-magnetic radiation.
Abstract:
A compact medium scanner (100) scans a surface (132) of a medium (134) with a beam of light (106). A medium transport mechanism (202, 206) advances the surface along a medium transport path through a scanning station. A light source (104) produces a collimated beam of light (106) that impinges upon a mirror plate (112) of a micromachined torsional scanner (108). A pair of coaxially aligned torsion bars (304) support the mirror plate (112) within the torsional scanner (108). A mirror-surface drive means (306, 312) rotates the mirror plate (112) about the torsion bars (304). A single reciprocation of the mirror plate (112) by the drive means (306, 312) deflects the beam of light (106) over a fan-shaped region having a virtually fixed vertex (128) on the mirror plate (112). Scanner optics (116, 122) direct the fan-shaped region beam of light (106) onto the surface (132) of the medium (134) then present in the scanning station to thereby scan across the medium (134) with the beam of light (106).