Abstract:
PROBLEM TO BE SOLVED: To overcome any difficulty in attainment of a tunable diode laser absorption spectroscopy (TDLAS).SOLUTION: A multiplexer 16 optically-connected with outputs of two or more diode lasers 12 having selected laser oscillating frequencies is optically-connected with an optical fiber on pitch side. A multiplexed laser beam is transmitted to a pitch optical component 20 associated with a process chamber 22 through the pitch side optical fiber. The pitch optical component 20 is oriented so as to radiate a multiplexed laser output through inside the process chamber. A catch optical component 24 receives the radiated multiplexed laser output. The catch optical component 24 is optically-connected with an optical fiber transmitting the multiplexed laser output to a demultiplexer 28. The demultiplexer 28 demultiplexes a laser beam to optically-connect the selected laser oscillating frequency of the laser beam with a detector 25. This detector has sensitivity to one of the selected laser oscillating frequencies.
Abstract:
PROBLEM TO BE SOLVED: To provide method and system for monitoring and control of combustion that overcome any difficulty in attainment of wavelength-variable diode laser absorption spectroscopy (TDLAS). SOLUTION: In this method, multiplexer 16 optically-connected with output of two or more diode lasers 12 having selected laser oscillating frequencies is optically-connected with optical fiber on pitch side. Multiplexed laser beam is transmitted to pitch optical component 20 associated with process chamber 22 through the pitch side optical fiber. The pitch optical component 20 is oriented so as to radiate multiplexed laser output through inside the process chamber. A catch optical component 24 receives the above radiated multiplexed laser output. The catch optical component 24 is optically-connected with the optical fiber transmitting the multiplexed laser output to demultiplexer 28. The demultiplexer 28 demultiplexes laser beam to optically-connect the selected laser oscillating frequency of the beam with a detector 25. This detector has sensitivity to one of the selected laser oscillating frequencies. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To solve the problem for achieving the tunable diode laser absorption spectroscopy (TDLAS). SOLUTION: A multiplexer (16) optically coupled to the outputs of more than one diode lasers (12) having selected lasing frequencies, is further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to pitch optics (20) operatively associated with a process chamber (22). The pitch optics (20) are oriented to project multiplexed laser output through the process chamber. Also catch optics (24) receive the projected multiplexed laser output. The catch optics (24) are optically coupled to the optical fiber which transmits the multiplexed laser output to a demultiplexer (28). The demultiplexer (28) demultiplexes the laser light and optically couples to detectors (25) the selected lasing frequencies of light. Each of detectors (25) is sensitive to one of the selected lasing frequencies. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A (de)multiplexer for use in optical communications systems includes a diffraction grating optically coupled between a multiplex optical waveguide and a plurality of single channel optical waveguides for diffracting an optical signal between a receiving/transmitting end of the multiplex optical waveguide and a receiving/transmitting end of the single channel optical waveguide. The diffraction grating has al least two surfaces optically coupled to the waveguides. Each of the surfaces is angularly displaced relative to one another a select amount such that a portion of the optical signal diffracted by each surface is offset the direction of dispersion relative to the portions of the optical signal diffracted by the other surfaces to broaden the transmission band. A method for broadening The transmission band of a (de)multiplexer includes dividing the diffraction grating into distinct surfaces and angularly displacing the surfaces relative to one another a select amount such that a portion of the optical signal diffracted by each surface is offset in a direction of dispersion.
Abstract:
An apparatus and methods for measuring combustion parameters in the measurement zone of a gas turbine engine. The measurement zone is defined as being between an outer casing and an engine component having a reflecting surface inside the outer casing. The apparatus comprises a laser generating a transmitting beam of light of a select wavelength and a multimode transmitting fiber optically coupled to the laser. A transmitting optic is optically coupled to the multimode optical fiber for transmitting the beam into the measurement zone. The reflecting surface is configured to provide a Lambertian reflection. A receiving optic is positioned to receive the Lambertian reflection. Means are provided in operative association with the multimode transmitting fiber for averaging modal noise induced signal level variation of light propagating within the multimode transmitting fiber.
Abstract:
A method of monitoring combustion properties in an interior of a boiler of the type having walls comprising a plurality of parallel steam tubes separated by a metal membrane. First and second penetrations are provided in the metal membrane between adjacent tubes on opposite sides of the boiler. A beam of light is projected through a pitch optic comprising a pitch collimating lens and a pitch relay lens, both residing outside the boiler interior. The pitch relay lens projects the beam through a penetration into the boiler interior. The beam of light is received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The strength of the collimated received beam of light is determined. At least one of the pitch collimating lens and the catch collimating lens may then be aligned to maximize the strength of the collimated received beam.
Abstract:
A dense wavelength multiplexer/demultiplexer ("DWDM") (10) for us in optical communication systems includes a multiplex optical waveguide (14) propagatin g a plurality of optical channels (.lambda.iest;1-n) of a select channel spaci ng multiplexed as a single optical signal within a select near infrared wavelength range. a collimating/focusing optic (18) is optically coupled to the multiplexed optical waveguide at a select focal length. A reflective echelle grating (20) is optically coupled to the collimating/focusing optic (18). The echelle grating (20) has a groove spacing (d) and blaze angle (.theta.b) providing a channel spacing (d) of the multiplexed optical signal (.lambda.l-n) at the select focal length for a select order of diffraction. A linear array of single channel waveguides (16), each propagating a single channel within the near infrared wavelength range is optically coupled to th e collimating/focusing optic. Each optical single channel waveguide (16) has a center and a propagating end and the propagating ends are spaced the focal length from the collimating/focusing optic and the centers of adjacent demultiplexed waveguides are spaced the select channel spacing (D). A fiber pigtail harness is used to connect the multiplexer which works in a Littrow configuration.
Abstract:
An apparatus and methods for measuring combustion parameters in the measurement zone of a gas turbine engine. The measurement zone is defined as being between an outer casing and an engine component having a reflecting surface inside the outer casing. The apparatus comprises a laser generating a transmitting beam of light of a select wavelength and a multimode transmitting fiber optically coupled to the laser. A transmitting optic is optically coupled to the multimode optical fiber for transmitting the beam into the measurement zone. The reflecting surface is configured to provide a Lambertian reflection. A receiving optic is positioned to receive the Lambertian reflection. Means are provided in operative association with the multimode transmitting fiber for averaging modal noise induced signal level variation of light propagating within the multimode transmitting fiber.
Abstract:
A method of absorption spectroscopy including obtaining absorption data a t multiple wavelengths along more than one line-of-sight path through a quan tity of gas of interest. The method further includes identifying more than o ne temperature and gas species concentration bin along the multiple line-of- sight paths and creating a map of temperature and gas species concentration. The map thus created will have at least two-dimensional information derived from select temperature and gas species concentration bins identified along more than one line-of-sight path. Apparatus for implementing the above meth od is also disclosed.