Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
The present disclosure provides methods and apparatus for testing light-emitting diodes (LEDs), for example, measuring the optical radiation of an LED. In a method, a pulse-width modulated signal is provided to the LED. One or more characteristics of the PWM signal are varied so as to provide a forward voltage, Vf, corresponding to a target junction temperature, Tj, of the LED. The optical radiation of the LED is measured when the LED obtains the target junction temperature.
Abstract:
The present invention relates to an improved dual beam multichannel spectrophotomer employing a simple and novel optical system in combination with photodiode arrays and a unique logrithmic data converter to convert light signals to absorbance. In particular, the optical system utilizes optical elements in a novel arrangement to direct a pair of equivalent sample and reference beams in an essentially parallel formation respectively through a sample and reference cell and to focus and direct the emergent sample and reference beams to a single flat horizonatally ruled grating which disperses each of the sample and reference beams respectively onto a pair of vertically disposed photodiode arrays whereby the light signals are converted into absorbance units (AU) by an unique logarithmic data converter. The spectrophotometer is highly accurate, has very low drift, less than 2 x 10⁻⁴ AU/°C, and very low noise, less than ±2 x 10⁻⁵AU. The dual beam multichannel spectrophotomer is particularly suitable for use in high pressure liquid chromatography to record the absorbance spectrum of the samples as they are being eluted from the chromatographic column.
Abstract:
0 Um apparativ bedingte Schwankungen bei der periodischen Bestimmung einer Meßgröße durch Differenzbildung zwischen einem durch die zu messende Größe gegenüber einem Ursprungssignal veränderten Meßsignal und einem durch die zu messende Größe gegenüber dem Ursprungssignal unbeeinflußten Referenzsignal auszuschalten, wird für jede Bestimmung der Meßgröße ein Grundsignalpegel (I) als Differenz zwischen dem Referenzpegel - (X) und einem Nullpegel (Y) bei fehlendem Ursprungssignal bestimmt und dann sowohl jeder aktuelle Referenzsignalpegel (A) als auch jeder Meßsignalpegel (B) mit dem zuerst gemessenen Referenzsignalpegel (X) kompensiert. Durch Verstärkung der kompensierten Referenzsignale (A') und Meßsignale (B') vor der Differenzbildung und Normierung der aus diesen Signalen gebildeten Differenz (E) auf den Grundsignalpegel (I) kann eine hohe Genauigkeit auch bei nur geringen Abschwächungen des Meßsignals durch die zu messende Größe erreicht werden (Fig. 2).
Abstract:
A system, apparatus and method of improved measurement of the SPF factor of sunscreen compositions. In one embodiment, a method of measuring the protection of a sunscreen composition includes exposing skin to a known intensity of light, measuring the amount of remitted light from the skin, applying sunscreen to the skin, exposing the skin to which the sunscreen has been applied the known intensity of emitted light of the spectrum of light from which the sunscreen is intended to protect the skin, measuring the amount of light remitted from the skin, and calculating a UltraViolet-A Protection Factor (UVA-PF) of the sunscreen by comparing the amount of light remitted from the skin with the sunscreen to the amount of light remitted from the skin without the sunscreen.
Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
The present invention relates to an improved dual beam multichannel spectrophotomer employing a simple and novel optical system in combination with photodiode arrays and a unique logrithmic data converter to convert light signals to absorbance. In particular, the optical system utilizes optical elements in a novel arrangement to direct a pair of equivalent sample and reference beams in an essentially parallel formation respectively through a sample and reference cell and to focus and direct the emergent sample and reference beams to a single flat horizontally ruled grating which disperses each of the sample and reference beams respectively onto a pair of vertically disposed photodiode arrays whereby the light signals are converted into absorbance units (AU) by an unique logarithmic data converter. The spectrophotometer is highly accurate, has very low drift, less than 2.times.10.sup.-4 AU/.degree.C., and very low noise, less than .+-.2.times.10.sup.-5 AU. The dual beam multichannel spectrophotomer is particularly suitable for use in high pressure liquid chromatography to record the absorbance spectrum of the samples as they are being eluted from the chromatographic column.
Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).