Abstract:
Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.
Abstract:
A method for measuring furnace temperatures. The method includes obtaining radiance measurements from a plurality of regions of interest (ROIs) using a plurality of thermal imaging cameras, and measuring a surface temperature using a radiance measurement obtained from an ROI selected from the plurality of ROIs. Measuring the surface temperature includes determining an effective background radiance affecting the selected ROI using radiance measurements obtained from ROIs different from the selected ROI, obtaining a compensated radiance by removing the effective background radiance from the radiance measurement obtained from the selected ROI, and converting the compensated radiance to the measured surface temperature.
Abstract:
A method and structure that inputs atmospheric forecast information from the atmospheric forecast database based on current, real time atmospheric measurements. The hyperspectral detection processing unit also inputs at least one selected reflectance library from the reflectance library database, and data collection and sensor parameters from the sensor. With this information, the hyperspectral detection processing unit employs a model to produce at least one mission radiance library during the mission planning phase. Then, during the actual mission execution, the sensor is used to collect the hyperspectral data and the comparator can immediately compare the hyperspectral data to the mission radiance library to identify features and/or targets.