Abstract:
A gas analyzer using a quadrupole mass spectrometric method etc. is provided with an ionizer to ionize a sample gas, a first ion detector and a second ion detector each configured to detect a respective ion from ionizer, and each being disposed a respective distance from the ionizer on an opposite side of the ionizer, the respective distances being different from each other, a filter interposed between the ionizer and the first ion detector to selectively allow ions from the ionizer to pass therethrough, and an arithmetic device to correct a partial pressure of a specific component obtained from the first ion detector and selected by the filter by using a first total pressure of the sample gas obtained from the first ion detector and a second total pressure of the sample gas obtained from the second ion detector.
Abstract:
A mass spectrometry unit of the present invention includes a mass spectrometry portion that detects ion current values of a gas to be measured according to mass-to-charge ratio, to thereby measure partial pressures of the gas to be measured. The mass spectrometry unit further includes: a control portion for preliminary storing a record of a mass-to-charge ratio of a specific gas that decreases a function of a specific portion of the mass spectrometry unit, in which if an ion current value with the mass-to-charge ratio of the specific gas detected by the mass spectrometry portion is not less than a predetermined value, the control portion outputs a warning signal denoting a functional decrease in the specific portion.
Abstract:
A gas analyzer using a quadrupole mass spectrometric method etc. is provided with an ionizer 211 to ionize a sample gas, a first ion detector 212 and a second ion detector 213 each configured to detect a respective ion from ionizer 211, and each being disposed a respective distance from the ionizer 211 on an opposite side of the ionizer 211, the respective distances being different from each other, a filter 214 interposed between the ionizer 211 and the first ion detector 212 to selectively allow ions from the ionizer 211 to pass therethrough, and an arithmetic device 3 to correct a partial pressure PP 1 of a specific component obtained from the first ion detector 212 and selected by the filter 214 by using a first total pressure TP 1 of the sample gas obtained from the first ion detector 212 and a second total pressure TP 2 of the sample gas obtained from the second ion detector 213.
Abstract:
This invention relates to a method of operating quadrupole mass spectrometers with only an RF potential applied to the filter rods so that the spectrometer operates to pass all ions above a particular value of m/e. In practice, spectrometers operated in this way usually show a marked loss in transmission efficiency for ions of high m/e when operated with an RF potential low enough to pass ions of m/e
Abstract:
A gas analyzer using a quadrupole mass spectrometric method etc. is provided with an ionizer 211 to ionize a sample gas, a first ion detector 212 and a second ion detector 213 each configured to detect a respective ion from ionizer 211, and each being disposed a respective distance from the ionizer 211 on an opposite side of the ionizer 211, the respective distances being different from each other, a filter 214 interposed between the ionizer 211 and the first ion detector 212 to selectively allow ions from the ionizer 211 to pass therethrough, and an arithmetic device 3 to correct a partial pressure PP1 of a specific component obtained from the first ion detector 212 and selected by the filter 214 by using a first total pressure TP1 of the sample gas obtained from the first ion detector 212 and a second total pressure TP2 of the sample gas obtained from the second ion detector 213.