Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
A multilayer bus board comprising a multilayer stacked assembly including a plurality of electrically conductive first layers, and at least one second dielectric layer disposed between adjacent first layers; and a frame formed of a dielectric material, the frame encapsulating at least a portion of the multilayer stacked assembly and mechanically maintaining the first and second layers in secure aligned abutting relation.
Abstract:
A circuit board includes an insulating layer including first and second insulator films, a first wiring layer embedded in the first insulator film and including pads and first wiring patterns exposed from the first insulator film, and a second wiring layer including second wiring patterns formed on the second insulator film and via wirings penetrating the insulating layer and electrically connecting the second wiring patterns to the first wiring layer. The first insulator film is made of a reinforcement-free resin that includes no reinforcing member. The second insulator film is made of a reinforcing member impregnated with a resin.
Abstract:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
Abstract:
A circuit board includes an insulating layer including first and second insulator films, a first wiring layer embedded in the first insulator film and including pads and first wiring patterns exposed from the first insulator film, and a second wiring layer including second wiring patterns formed on the second insulator film and via wirings penetrating the insulating layer and electrically connecting the second wiring patterns to the first wiring layer. The first insulator film is made of a reinforcement-free resin that includes no reinforcing member. The second insulator film is made of a reinforcing member impregnated with a resin.
Abstract:
A multilayer bus board comprising a multilayer stacked assembly including a plurality of electrically conductive first layers, and at least one second dielectric layer disposed between adjacent first layers; and a frame formed of a dielectric material, the frame encapsulating at least a portion of the multilayer stacked assembly and mechanically maintaining the first and second layers in secure aligned abutting relation.