一种基于HNN的小型模块化反应堆传感器数值重构方法

    公开(公告)号:CN117669356A

    公开(公告)日:2024-03-08

    申请号:CN202311171914.X

    申请日:2023-12-16

    Abstract: 本发明公开了一种基于HNN的小型模块化反应堆传感器数值重构方法,通过仿真模型获得数据,搭建基于混合神经网络的数值重构模型;应用基于混合神经网络的数值重构方案;评价基于混合神经网络的数值重构方法。用接近正常传感值的重构值替换异常传感值,即使传感器发生故障,也能向控制和保护系统传递精确的过程参数值,从而保障小型模块化反应堆的安全运行,采取膨胀卷积网络提取多维时间序列的空间特征信息;采取LSTM提取多维时序数据的时间特征,此外,本方法还采用跳跃连接结构,以防止在训练过程中出现梯度消失。最后,训练常规LSTM模型,将其作为对比模型,验证了基于混合神经网络的小型模块化反应堆传感器数值重构方法的优势。

    一种船舶核动力装置热力系统管网仿真方法

    公开(公告)号:CN115079592B

    公开(公告)日:2023-07-18

    申请号:CN202210815340.4

    申请日:2022-07-12

    Abstract: 本发明涉及一种船舶核动力装置热力系统管网仿真方法,包括:选定时间步长,构建船舶核动力装置热力系统仿真模型,并对仿真模型中的元件进行编号以及连接,按连接线顺序进行编号,根据不同编号的连接线与元件之间的关系,确定元件连接关系矩阵;基于元件连接关系矩阵进行守恒计算,建立压力求解模型和比焓求解模型,进行求解并推进时间步长,并进行结构参数重构以及拓扑关系重构,实现船舶核动力装置热力系统管网仿真。本发明所提供的仿真方法能够在不中断仿真程序运行的情况下在线修改设备的结构参数、拓扑连接关系,且过程稳定,能够满足船舶核动力装置全生命周期情况下,各阶段不同的应用需求。

    一种具有参数化、可重构特征的核动力管网模型预处理方法

    公开(公告)号:CN114491864B

    公开(公告)日:2022-12-13

    申请号:CN202210115993.1

    申请日:2022-01-26

    Abstract: 本发明涉及的是一种仿真预处理方法,具体地说是一种具有参数化、可重构特征的核动力管网模型预处理方法。包括采用控制体积法离散工艺系统,拆解容积属性与流动属性进行建模;依据仿真模型的耦合性需要及系统流程确定边界种类及位置;根据离散的工艺系统与确定的边界绘制仿真图并编号;制定参数化数据输入卡的格式规范;依据系统的设计运行参数和仿真图,生成参数化数据卡文件。本发明的预处理过程带有试算过程,试算成功后的最终初值文件即为稳态工况点,可大幅度减少稳态工况的调试时间,提高调试效率。如试算失败,则不会增加额外的负担,与现有方式处理一致。因此,总体上,本发明的预处理方法提高了调试效率。

    一种船舶核动力管网仿真中的母管模拟方法及系统

    公开(公告)号:CN114491817B

    公开(公告)日:2022-10-04

    申请号:CN202210122499.8

    申请日:2022-02-09

    Abstract: 本发明公开了一种应用于船舶核动力装置仿真中的母管模拟方法及系统,应用于母管仿真技术领域,具体地,根据仿真对象系统的特点,将实际工艺系统转化管网模型仿真图,并根据仿真对象实际的结构,选定管网系统与外部系统的边界、管网系统与母管模型的边界;根据所属仿真图绘制,将管网边界的压力数据、流量数据与互扰控制体模型进行交互;根据母管隔离阀门的状态,确定互扰控制体的解耦与耦合状态;利用传递的边界数据计算母管的热工参数,并向管网模型反馈热力学参数计算结果。本发明在母管联通状态下,能够模拟出母管内压力、温度(焓值)的均匀分布特性;母管隔离的状态下,能够模拟出母管隔离阀两侧压力、温度(焓值)相对独立的特性。

    一种热管冷却混合燃料反应堆系统

    公开(公告)号:CN110534213B

    公开(公告)日:2022-09-27

    申请号:CN201910829826.1

    申请日:2019-09-04

    Abstract: 本发明公开了一种热管冷却混合燃料反应堆系统,包括堆芯活性区、储液罐、控制鼓、反射层和堆芯筒体;其中堆芯活性区由多个六边形燃料组件构成,多根热管均匀分布在燃料组件内部;所述反射层位于所述堆芯活性区外围,多个对称布置的控制鼓设置在所述反射层内部;储液罐设置于堆芯活性区下方。所述堆芯活性区、储液罐、控制鼓、反射层都设置于堆芯筒体内部。本发明的反应堆堆芯兼顾了固态堆芯与液态堆芯的优点,在事故条件下可以通过液体燃料的排放改变堆芯临界体积,实现反应堆的紧急停堆,提高反应堆的固有安全性。

    沸腾合金冷却堆芯的碱金属热电转换核反应堆系统

    公开(公告)号:CN113035389B

    公开(公告)日:2022-07-08

    申请号:CN202110240302.6

    申请日:2021-03-04

    Abstract: 本发明公开了一种沸腾合金冷却堆芯的新型碱金属热电转换核反应堆系统,属于核反应堆工程技术领域,其包括反应堆模块、钠蒸气分离器、第一回热器、冷凝器、第一电磁泵、热交换器、电极室、负载、第二回热器、第二电磁泵;反应堆模块包括燃料,燃料周围布置有冷却剂通道;冷却剂通道下端连接有分流室,上端连接有集流室;集流室的出口与钠蒸气分离器的入口连接;电极室包括液态钠电极室、BASE和熔融合金电极室;负载的两端分别与液态钠电极室、熔融合金电极室连接。本发明采用沸腾合金冷却堆芯,钠在冷却剂通道沸腾段中沸腾气化,合金还原发生于堆芯,取消了反应堆主冷却剂回路以及钠蒸馏分离室、主冷却剂回路与发电回路之间的换热器,简化了设备。

    一种面向核动力装置管网仿真应用的可相变工质物性快速计算方法

    公开(公告)号:CN114492055A

    公开(公告)日:2022-05-13

    申请号:CN202210111477.1

    申请日:2022-01-26

    Abstract: 本发明涉及的是一种可相变的物性计算方法,具体地说是一种面向核动力装置管网仿真应用的可相变工质物性快速计算方法。具体包括:选择的工质物性按压力——温度坐标,分为过冷、饱和、过热、超临界4个区间;饱和参数区间采用温度或压力为自变量,以线性插值方法求取压力或温度、比容、比焓、比熵、定压比热;根据输入参数,自动进行分区;过冷区间能够根据压力、比焓,以计算的方式求取温度。发明中的方法即保证了插值结果与实际值误差很小的要求,又不需要迭代、不需要从头遍历插值基点,计算量大幅度减少,在保证精度的同时提高了计算速度,满足核动力装置管网模型实时仿真,甚至超实时仿真的计算需求。

    海洋条件下含自由液面的大容积设备液位测量方法及系统

    公开(公告)号:CN114061695A

    公开(公告)日:2022-02-18

    申请号:CN202111436940.1

    申请日:2021-11-29

    Abstract: 本发明公开了一种海洋条件下含自由液面的大容积设备液位测量方法及系统,涉及海洋条件下液位测量技术领域,采用液位测量装置,包括以下步骤:S101、在大容积设备和液位测量装置上布置传感器;S201、获取S101中的传感器的测量值;S301、建立消除海洋条件对大容积设备液位测量影响的数学模型;S401、将S201中的测量值代入到S301中的数学模型中,得到消除海洋条件影响的液位测量值。本发明采用加速度计和倾角仪获取海洋条件对差压液位传感器的液位测量影响,在此基础上构建消除海洋条件影响的数学模型,从机理上消除了海洋条件对含自由液面大容积设备的液位测量影响。

    一种用于浮动核电站的压力容器外部冷却系统

    公开(公告)号:CN113345609A

    公开(公告)日:2021-09-03

    申请号:CN202110614860.4

    申请日:2021-06-02

    Abstract: 本发明公开了一种用于浮动核电站的压力容器外部冷却系统,属于核反应堆工程技术领域,其包括安全壳、压力容器、液态镓收集箱、热管、冷却舱和储镓箱;安全壳布置在大海环境,安全壳具有容纳腔;压力容器和液态镓收集箱上下设置,并位于安全壳的容纳腔内;热管的一端插置在液态镓收集箱内,另一端设置在液态镓收集箱外;储镓箱位于安全壳的容纳腔内;储镓箱通过液态镓释放阀门与液态镓收集箱连通;冷却舱设置安全壳的下端,并位于大海环境的海平面以下。本发明不会面临热阱丧失导致反应堆容器外部冷却失效的风险,不会在安全壳内部产生大量蒸汽,避免了流道阻塞和安全壳超压的问题,具有安全稳定、可以长期运行的优点。

    一种浮动核电站二回路主要设备体积优化方法

    公开(公告)号:CN110795857A

    公开(公告)日:2020-02-14

    申请号:CN201911073924.3

    申请日:2019-11-06

    Abstract: 本发明公开了一种浮动式核电站二回路主要设备体积优化方法,包括:(1)建立二回路主要设备结构设计的数学模型;(2)选取优化参数;(3)建立目标函数;(4)建立约束条件;(5)建立二回路热力方案;(6)进行热平衡计算;(7)计算设备总体积,得到目标函数值;(8)参数优化,通过改进粒子群算法对优化参数进行优化,计算粒子速度并得到下一代粒子位置,更新个体最优粒子和全局最优粒子;(9)重复步骤(6)-(8),直到完成预先设置的迭代次数,将使目标函数值最小的一组优化参数作为最优解。本发明的方法保证了在对各个设备进行结构设计时设备之间能够相互匹配;采用的改进粒子群算法能够达到全局最优。

Patent Agency Ranking