-
公开(公告)号:CN111968952B
公开(公告)日:2024-06-18
申请号:CN202010774407.5
申请日:2020-08-04
Applicant: 清华大学无锡应用技术研究院
IPC: H01L23/467 , H01L23/40 , H01L23/367
Abstract: 本发明公开了一种氮化镓基大功率芯片散热结构,包括散热底板、安装底座,所述散热底板的顶部从下至上依次设置有三氧化二铝衬底层、N型氮化镓子层、P型氮化镓子层和透明导电层,所述散热底板顶部的四角均固定连接有支撑杆,四个所述支撑杆的顶端之间固定连接有顶板,所述顶板上设置有移动散热机构,散热底板上设置有卡紧安装机构,本发明涉及大功率芯片技术领域。该氮化镓基大功率芯片散热结构,通过驱动电机、驱动轴、转盘、第一齿牙、第二齿牙的配合,便于带动回形框左右往复运动,进一步可带动移动风扇左右运动,能对芯片整体进行散热,且通过移动风扇的左右移动,可防止芯片表面积累灰层,使得散热效果更佳。
-
公开(公告)号:CN112076608B
公开(公告)日:2022-08-12
申请号:CN202010775497.X
申请日:2020-08-05
Applicant: 清华大学无锡应用技术研究院
Abstract: 本发明公开了一种氮化镓生产炉废氨气回收装置,包括热量回收箱、氨气回收箱、抽液泵和储液箱,所述抽液泵的右侧连通有吸液管,所述抽液泵的顶部固定连接有输液管,所述混合吸收层内腔的右侧固定连接有三号机械箱,所述混合吸收层内腔的左侧固定连接有混合池,所述三号机械箱内腔的底部固定连接有抽气泵,本发明涉及废气回收利用技术领域。该氮化镓生产炉废氨气回收装置,通过混合池和抽气泵的设置,使得氮化镓生产炉废氨气回收装置在进行使用时,可以通过抽气泵配合吸气管对废氨气进行有效吸收并通过配合气液混合管提高废氨气和稀硫酸溶液的融合,提高了废氨气的回收利用效率,避免了氨气回收不够充分的问题。
-
公开(公告)号:CN112104370B
公开(公告)日:2022-05-03
申请号:CN202011022536.5
申请日:2020-09-25
Applicant: 无锡英诺赛思科技有限公司 , 清华大学无锡应用技术研究院
IPC: H03M1/34
Abstract: 本发明属于集成电路技术领域,具体为一种高精度模数转换器转换速度提升电路,该电路包括:信号输入电路、高精度ADC内核、高性能采样开关、保持电路、比较器、FIFO电路、数据求和电路以及数字校准电路。本发明所述高精度模数转换器转换速度提升电路采用微分信号处理技术,在传统中速高精度ADC内核基础上增加了输入模拟信号跟踪量化电路,实现模拟信号的高速跟随和量化,达到提升ADC转换速率的目的。所述模拟信号跟踪量化电路仅包括高性能采样开关、保持电路、比较器、FIFO电路以及数据求和电路,在不需要成倍增加硬件和功耗开销的条件下,快速提升ADC转换速度,具有低成本优势。
-
公开(公告)号:CN112071962B
公开(公告)日:2022-04-26
申请号:CN202010774402.2
申请日:2020-08-04
Applicant: 清华大学无锡应用技术研究院
IPC: H01L33/00
Abstract: 本发明公开了一种在图形化蓝宝石衬底上生长氮化镓外延层的加工装置,包括加工箱体,加工箱体内壁的底部固定连接有转动电机,所述转动电机的输出端固定连接有加工台,所述加工台上设置有夹紧机构,所述加工箱体内壁之间的上方固定连接有固定板,所述加工箱体的内部设置有调节机构(6);该加工装置利用加热管产生的高温使得加工箱体内部产生高温环境,满足蓝宝石衬底上生长氮化镓外延层的加工时所需的高温环境,结构简单,成本低,方便快速的调节蓝宝石衬底上生长氮化镓外延层的温度条件的问题。
-
公开(公告)号:CN113078801B
公开(公告)日:2022-04-05
申请号:CN202110347587.3
申请日:2021-03-31
Applicant: 无锡英诺赛思科技有限公司 , 清华大学无锡应用技术研究院
IPC: H02M1/08 , H02M1/32 , H03F3/45 , H03K19/0185
Abstract: 本发明涉及一种用于高压IGBT器件栅驱动所需要的超高压绝缘隔离IGBT半桥栅驱动电路,该电路包括输入接收电路、死区时间产生电路、低侧延时电路、低侧输出驱动电路、调制发送电路、4个高压电容、高共模瞬态抑制差分信号接收电路、高侧输出驱动电路、发送端低压产生电路和接收端低压产生电路。本发明所提供的超高压绝缘隔离SiC MOSFET栅驱动电路,一方面,采用高压绝缘隔离技术,可实现超高耐压绝缘电容;另一方面,可自动检测地电位共模瞬态噪声的大小,并在噪声超过阈值时对共模瞬态噪声产生的误差进行动态补偿。本发明可以广泛应用于驱动各类高压功率器件。
-
公开(公告)号:CN113067564B
公开(公告)日:2022-03-01
申请号:CN202110349739.3
申请日:2021-03-31
Applicant: 无锡英诺赛思科技有限公司 , 清华大学无锡应用技术研究院
IPC: H03K17/08
Abstract: 本发明公开了一种高效率绝缘隔离SiC MOSFET栅驱动电路,该电路包括:高精度输入信号接收电路、数字控制电路、调制发送电路、隔离电路、高共模瞬态抑制差分信号接收电路、高效率输出驱动电路、发送端低压产生电路、接收端低压产生电路和芯片状态监测电路。本发明所提供的高效率绝缘隔离SiC MOSFET栅驱动电路,首先,采用高压电容绝缘隔离技术,可实现高耐压的前提下,提高信号处理速度;其次,可以根据负载大小和输入控制脉冲的频率自适应调整驱动电流,从而最大程度上提高驱动电路的电源效率;另外,采用高精度输入信号接收电路,提高信号输入可靠性。本发明可以广泛应用于驱动各类高压SiC MOSFET和IGBT器件。
-
公开(公告)号:CN113067564A
公开(公告)日:2021-07-02
申请号:CN202110349739.3
申请日:2021-03-31
Applicant: 无锡英诺赛思科技有限公司 , 清华大学无锡应用技术研究院
IPC: H03K17/08
Abstract: 本发明公开了一种高效率绝缘隔离SiC MOSFET栅驱动电路,该电路包括:高精度输入信号接收电路、数字控制电路、调制发送电路、隔离电路、高共模瞬态抑制差分信号接收电路、高效率输出驱动电路、发送端低压产生电路、接收端低压产生电路和芯片状态监测电路。本发明所提供的高效率绝缘隔离SiC MOSFET栅驱动电路,首先,采用高压电容绝缘隔离技术,可实现高耐压的前提下,提高信号处理速度;其次,可以根据负载大小和输入控制脉冲的频率自适应调整驱动电流,从而最大程度上提高驱动电路的电源效率;另外,采用高精度输入信号接收电路,提高信号输入可靠性。本发明可以广泛应用于驱动各类高压SiC MOSFET和IGBT器件。
-
公开(公告)号:CN112104370A
公开(公告)日:2020-12-18
申请号:CN202011022536.5
申请日:2020-09-25
Applicant: 无锡英诺赛思科技有限公司 , 清华大学无锡应用技术研究院
IPC: H03M1/34
Abstract: 本发明属于集成电路技术领域,具体为一种高精度模数转换器转换速度提升电路,该电路包括:信号输入电路、高精度ADC内核、高性能采样开关、保持电路、比较器、FIFO电路、数据求和电路以及数字校准电路。本发明所述高精度模数转换器转换速度提升电路采用微分信号处理技术,在传统中速高精度ADC内核基础上增加了输入模拟信号跟踪量化电路,实现模拟信号的高速跟随和量化,达到提升ADC转换速率的目的。所述模拟信号跟踪量化电路仅包括高性能采样开关、保持电路、比较器、FIFO电路以及数据求和电路,在不需要成倍增加硬件和功耗开销的条件下,快速提升ADC转换速度,具有低成本优势。
-
公开(公告)号:CN112133808B
公开(公告)日:2022-03-11
申请号:CN202010775492.7
申请日:2020-08-05
Applicant: 清华大学无锡应用技术研究院
Abstract: 本发明公开了一种全彩氮化镓基芯片立式封装结构,包括安装座、固定座和芯片板,安装座的底部贯穿固定座的顶部并延伸至固定座的内腔,固定座的内腔开设有与安装座的表面适配的安装槽,安装座的内腔与芯片板的表面活动连接,本发明涉及芯片封装结构技术领域。该全彩氮化镓基芯片立式封装结构,在对芯片板进行安装时,将芯片板和固定架均插接进安装座内,然后在固定架与安装座之间的缝隙里填充封装胶,将固定架和安装座之间胶合住,然后将支撑架套设在芯片板表面,将支撑架插接进支撑槽内,通过支撑架对芯片板进行支撑限位,可以快速对芯片板进行封装,使得封装效率大大提高,封装工艺简化,操作简单,使用效果好。
-
公开(公告)号:CN113098471A
公开(公告)日:2021-07-09
申请号:CN202110349643.7
申请日:2021-03-31
Applicant: 无锡英诺赛思科技有限公司 , 清华大学无锡应用技术研究院
IPC: H03K17/687
Abstract: 本发明涉及一种超高速绝缘隔离GaN半桥栅驱动电路,包括输入接收电路、数控高精度死区时间产生电路、低侧数控延时电路、低侧输出驱动电路、低侧栅压钳位电路、调制发送电路、高压电容、高共模瞬态抑制差分信号接收电路、高侧输出驱动电路、高侧栅压钳位电路、发送端低压产生电路、芯片状态监测电路和接收端低压产生电路。本发明可在高耐压的前提下提高信号处理速度;自动检测地电位共模瞬态噪声的大小,并在噪声超过阈值时对共模瞬态噪声产生的误差进行动态补偿;采用高精度死区时间控制技术,最大程度优化高低侧信号死区时间,提高输出信号相位精度;采用芯片状态实时监测和智能化保护电路,保证GaN工作在理想工作区,提高可靠性。
-
-
-
-
-
-
-
-
-