-
公开(公告)号:CN109734453B
公开(公告)日:2021-07-06
申请号:CN201910099421.7
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/5835 , C04B35/195 , C04B35/645
Abstract: 本发明公开一种航天防热用氮化硼‑锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述复合材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:对所述原料粉体进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:对所述原料粉末进行冷压,得到块体原料;S5:对所述块体原料进行热压烧结,得到航天防热用氮化硼‑锶长石陶瓷基复合材料。本发明提供的航天防热用氮化硼‑锶长石陶瓷基复合材料的制备方法,在保证氮化硼‑锶长石陶瓷基复合材料介电性能的前提下,使得制备的氮化硼‑锶长石陶瓷基复合材料具有良好的力学及可加工性能。
-
公开(公告)号:CN109650862B
公开(公告)日:2021-06-25
申请号:CN201910099447.1
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/622 , C04B35/64
Abstract: 本发明公开一种耐高温氮化硼‑锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备技术领域,所述制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料;S2:对所述原料进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末放入石墨模具中,进行冷压,得到块体原料;S5:对所述块体原料进行放电等离子体烧结,得到耐高温氮化硼‑锶长石陶瓷基复合材料。本发明提供的耐高温氮化硼‑锶长石陶瓷基复合材料的制备方法,通过将氮化硼引入锶长石中,使得制备的氮化硼‑锶长石陶瓷基复合材料不仅具有良好的力学及可加工性能,同时,还具有良好的介电和耐高温性能。
-
公开(公告)号:CN108706984B
公开(公告)日:2021-06-04
申请号:CN201810779802.5
申请日:2018-07-16
Applicant: 哈尔滨工业大学
Abstract: 一种二硼化锆和短碳纤维改性的抗热震、耐烧蚀SiBCN陶瓷材料及其制备方法,涉及一种SiBCN陶瓷材料及其制备方法。目的是解决SiBCN陶瓷抗热震和耐烧蚀性差的问题。本发明SiBCN陶瓷材料由SiBCN、短碳纤维和ZrB2复合而成。制备方法:将硅粉、石墨粉、六方氮化硼粉和二硼化锆粉球磨得到纳米SiBCN‑ZrB2粉末,与短碳纤维复合后分散和球磨处理得到陶瓷浆料,最后依次烘干,磨细和烧结,即完成。本发明制备通过ZrB2和Cf改性SiBCN,制备的SiBCN陶瓷具有优异的抗热震性和耐烧蚀性,拓展了SiBCN陶瓷材料高温服役的温度区间。本发明适用于制备SiBCN陶瓷。
-
公开(公告)号:CN112851359A
公开(公告)日:2021-05-28
申请号:CN202110085694.3
申请日:2021-01-22
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/565 , C04B35/622 , D01F9/10
Abstract: 本发明提供了一种吸波型SiBCN纳米纤维及其制备方法,属于陶瓷吸波材料技术领域。所述吸波型SiBCN纳米纤维微观相结构由碳化硅相、自由碳相和硅硼碳氮非晶基体相组成,所述碳化硅相和所述自由碳相分散在所述硅硼碳氮非晶基体相中。本发明的SiBCN纳米纤维中的SiBCN非晶基体相为电绝缘基体,具有优异的透波性能,而SiC相和自由碳相具有良好的介电性能,可改善SiBCN纳米纤维与自由空间之间的阻抗失配,使得入射的电磁波会尽可能多地由空气介质渗透到SiBCN纳米纤维中,并转化为内部能量。而且均匀分布在电绝缘基体中的由SiC相和自由碳相组成的导电相可以进一步调节材料的介电常数,引起较高的介电损耗以增强SiBCN纳米纤维的电磁波吸收能力。
-
公开(公告)号:CN110171973A
公开(公告)日:2019-08-27
申请号:CN201910502477.2
申请日:2019-06-11
Applicant: 哈尔滨工业大学
IPC: C04B35/52 , C04B35/626 , C01B32/198 , B33Y70/00 , B33Y10/00 , H01B13/00
Abstract: 一种3D打印耐高温石墨烯基导电结构的方法,本发明涉及一种3D打印导电结构的方法。解决现有石墨烯基电极浆料固相含量低、成型后会收缩变形导致结构难以维持设计形状与精度的问题。制备方法:一、制备氧化石墨烯;二、制备氧化石墨烯/石墨3D打印浆料;三、氧化石墨烯/石墨3D打印成型;四、3D打印氧化石墨烯/石墨高温还原。本发明用于3D打印耐高温石墨烯基导电结构。
-
公开(公告)号:CN109851375A
公开(公告)日:2019-06-07
申请号:CN201910096687.6
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/66 , C04B35/58 , C04B35/626 , C04B35/645 , C04B35/622
Abstract: 本发明提供了一种硅硼碳氮陶瓷复合材料及制备方法,所述硅硼碳氮陶瓷复合材料的制备方法,具体步骤为:将硅粉、石墨粉和六方氮化硼粉混合,并在球磨罐中进行球磨,得到SiBCN非晶粉末;将所述SiBCN非晶粉末与钛增强相粉末混合,并在球磨罐中进行球磨,得到复合粉体;其中,所述钛增强相粉末包括TiB2粉和TiC粉,或,TiB和TiB2混合粉;将所述复合粉体进行热压烧结,得到所述硅硼碳氮陶瓷复合材料。本发明通过采用钛增强相作为增强相用于补强增韧硅硼碳氮陶瓷基体,可以显著提高硅硼碳氮陶瓷复合材料的抗弯强度与断裂韧性。
-
公开(公告)号:CN109761621A
公开(公告)日:2019-05-17
申请号:CN201910204702.4
申请日:2019-03-18
Applicant: 哈尔滨工业大学
IPC: C04B35/584 , C04B35/622 , C04B35/626 , B28B1/00 , B33Y10/00 , B33Y70/00
Abstract: 一种可制备大尺寸复杂形状氮化硅陶瓷的方法,本发明涉及制备氮化硅陶瓷的方法。解决现有直写成型技术无法制备大尺寸的氮化硅陶瓷材料的问题。制备方法:一、称取;二、混合;三、3D打印;四、烧结,即完成可制备大尺寸复杂形状氮化硅陶瓷的方法。本发明可用于制备大尺寸复杂形状氮化硅陶瓷。
-
公开(公告)号:CN109650863A
公开(公告)日:2019-04-19
申请号:CN201910099462.6
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/583 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种氮化硼-锶长石高温透波复相陶瓷材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述氮化硼-锶长石高温透波复相陶瓷材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:将所述原料粉体进行球磨,得到球磨粉末;S3:将所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末冷压成型,得到原料坯体;S5:对所述原料坯体进行热等静压烧结,得到氮化硼-锶长石高温透波复相陶瓷材料。本发明提供的氮化硼-锶长石高温透波复相陶瓷材料的制备方法,通过将六方氮化硼引入锶长石中,使得制备的复相陶瓷材料不仅具有良好的可加工性能,还具有良好的介电和耐高温性能。
-
公开(公告)号:CN109650862A
公开(公告)日:2019-04-19
申请号:CN201910099447.1
申请日:2019-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/195 , C04B35/622 , C04B35/64
Abstract: 本发明公开一种耐高温氮化硼-锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备技术领域,所述制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料;S2:对所述原料进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末放入石墨模具中,进行冷压,得到块体原料;S5:对所述块体原料进行放电等离子体烧结,得到耐高温氮化硼-锶长石陶瓷基复合材料。本发明提供的耐高温氮化硼-锶长石陶瓷基复合材料的制备方法,通过将氮化硼引入锶长石中,使得制备的氮化硼-锶长石陶瓷基复合材料不仅具有良好的力学及可加工性能,同时,还具有良好的介电和耐高温性能。
-
公开(公告)号:CN108640690A
公开(公告)日:2018-10-12
申请号:CN201810785471.6
申请日:2018-07-17
Applicant: 哈尔滨工业大学
IPC: C04B35/5833 , C04B35/645
Abstract: 一种定向传热六方氮化硼/堇青石织构陶瓷及其制备方法,涉及一种织构陶瓷及其制备方法。目的是解决h-BN织构陶瓷在垂直于片层方向和平行于片层方向的热导率相差小的问题。定向传热六方氮化硼/堇青石织构陶瓷按质量分数由h-BN粉体、MgO粉体、纳米Al2O3粉体和熔融石英粉体制备而成。制备:称取原料并将原料混合后进行蒸发干燥和过筛,然后装入石墨模具中预压得到坯体,最后进行热压烧结。本发明通过热压烧结技术制备具有织构特征的六方氮化硼/堇青石织构陶瓷,提高h-BN晶粒定向程度,从而使h-BN陶瓷定向传热,垂直于片层方向上和平行于片层方向上的热导率相差最高为12.2倍。本发明适用于制备织构陶瓷热防护材料。
-
-
-
-
-
-
-
-
-