-
公开(公告)号:CN116477952B
公开(公告)日:2024-05-17
申请号:CN202310515235.3
申请日:2023-05-09
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/58 , C04B35/622 , C04B35/645 , C04B35/626
Abstract: 一种碳化钽铪‑硅硼碳氮陶瓷扩散偶的制备方法,它涉及扩散偶的制备方法。本发明要解决现有Ta4HfC5/SiBCN陶瓷扩散偶难以结合,界面结合强度差,扩散行为不明显的问题。制备方法:一、高能球磨制备非晶相SiBCN粉体;二、粉体装填至模具;三、热压烧结。本发明用于碳化钽铪‑硅硼碳氮陶瓷扩散偶的制备。
-
公开(公告)号:CN117843386A
公开(公告)日:2024-04-09
申请号:CN202410054890.8
申请日:2024-01-15
Applicant: 哈尔滨工业大学
IPC: C04B35/80 , C04B35/628 , C04B35/58 , C04B35/66
Abstract: 一种优异高温力学性能C/C‑SiBCN喷管的制备方法,它涉及C/C‑SiBCN喷管的制备方法。本发明要解决现有喷管无法实现轻质化及喉部区域结构强度的同时满足,而且解决现有PIP工艺制备C/SiBCN复合材料需要高温和压力导致碳纤维的损伤。方法:一、在碳纤维预制体内的纤维表面制备热解碳界面层;二、制备C/C‑SiBCN复合材料基体,实现较高程度致密化、轻质化和优异的高温力学性能;三、通过精密机械加工制备出喉部区域外表面具有环向交叉加强筋的C/C‑SiBCN喷管。本发明用于优异高温力学性能C/C‑SiBCN喷管的制备。
-
公开(公告)号:CN109053169A
公开(公告)日:2018-12-21
申请号:CN201810846254.3
申请日:2018-07-27
Applicant: 哈尔滨工业大学
IPC: C04B35/14 , C04B35/81 , C04B35/622 , C04B35/626 , C04B35/645
CPC classification number: C04B35/14 , C04B35/622 , C04B35/6263 , C04B35/645 , C04B35/803 , C04B2235/386 , C04B2235/5276 , C04B2235/656 , C04B2235/96
Abstract: 一种致密氮化硼晶须增强熔融石英复合陶瓷及制备方法,涉及一种熔融石英复合陶瓷及制备方法。目的是解决氮化硼晶须增强复合陶瓷相对密度低的问题。致密氮化硼晶须增强熔融石英复合陶瓷由氮化硼晶须和熔融石英制备而成,氮化硼晶须的质量分数为5~50%。制备:将氮化硼晶须均匀分散在酒精溶液中得到氮化硼晶须浆料,将熔融石英粉、酒精溶液和氮化硼晶须浆料混合、球磨、超声搅拌和干燥,得到混合粉体,混合粉体装入石墨模具并预压得到坯体;坯体热压烧结。本发明制备的致密的氮化硼晶须/熔融石英复合陶瓷,断裂韧性和相对密度提高,相对密度最大为99.8%,断裂韧性为1.6~3.4MPa·m1/2。本发明适用于制备熔融石英复合陶瓷。
-
公开(公告)号:CN115180957B
公开(公告)日:2023-03-31
申请号:CN202210812537.2
申请日:2022-07-11
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/622 , C04B35/645 , H01Q1/42
Abstract: 一种具有优异热透波性能的六方氮化硼陶瓷的制备方法,涉及一种六方氮化硼陶瓷的制备方法。为了解决六方氮化硼陶瓷在高温下介电损耗随温度增加异常增加的问题。制备方法:称取h‑BN粉体和硅溶胶溶液,混合均匀后装入钢模具中,进行振荡预压处理,干燥处理将陶瓷干燥坯体放入石墨坩埚中进行气压烧结,获得织构指数为2000~8000的六方氮化硼陶瓷,作为热透波材料使用。本发明六方氮化硼陶瓷的织构指数为2000~8000和具有低缺陷浓度,能够防止高温下六方氮化硼陶瓷透波性能的异常衰减,具有优异的热透波性能。
-
公开(公告)号:CN111217610A
公开(公告)日:2020-06-02
申请号:CN201910532639.7
申请日:2019-06-19
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/645
Abstract: 本发明提供了一种纳米晶碳化钽增强硅硼碳氮复相陶瓷材料及其制备方法,上述制备方法包括以下步骤:S1:制备纳米晶碳化钽粉体;S2:按照预设比例将所述纳米晶碳化钽粉体、六方氮化硼、立方硅粉和石墨混合,后高能球磨,得到复合粉体;S3:将复合粉体热压烧结,制得纳米晶碳化钽增强硅硼碳氮复相陶瓷材料。本发明以硅硼碳氮陶瓷为基体,添加碳化钽增强相制备成纳米晶碳化钽增强硅硼碳氮复相陶瓷材料,超高温相碳化钽颗粒以纳米晶的形式均匀分散于非晶的硅硼碳氮基体当中,可起到钉扎裂纹扩展的作用,提高硅硼碳氮陶瓷的力学性能,同时碳化钽的超高温性质对硅硼碳氮陶瓷进行补强,提高复相陶瓷材料的耐高温性能,使其在可在更高的温度下服役。
-
公开(公告)号:CN116693297B
公开(公告)日:2024-08-23
申请号:CN202310735099.9
申请日:2023-06-20
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/622 , C04B35/65 , C04B35/645 , C04B35/626 , C04B35/628
Abstract: 一种具有PDCs‑SiBCN三维网络包覆结构的亚稳态SiBCN陶瓷的制备方法,本发明属于陶瓷领域。本发明要解决现有方法无法制备大尺寸致密SiBCN亚稳态陶瓷的问题。方法:一、非晶MA‑SiBCN纳米粉体制备;二、包覆粉体的制备;三、包覆粉体的温压‑裂解‑烧结三段式烧结工艺。本发明用于具有PDCs‑SiBCN三维网络包覆结构的亚稳态SiBCN陶瓷的制备。
-
公开(公告)号:CN117697919A
公开(公告)日:2024-03-15
申请号:CN202311838210.3
申请日:2023-12-28
Applicant: 哈尔滨工业大学
Abstract: 一种利用直写式3D打印技术制备复相陶瓷的方法,它属于陶瓷材料增材制造领域。本发明要解决现有陶瓷前驱体直写打印后,坯体从聚合物至陶瓷的热解过程存在构件线性收缩率及孔隙率高,导致力学性能下降的问题。方法:一、称取;二、制备陶瓷浆料;三、3D打印;四、固化及热解。本发明通过改变针头直径大小即可实现形状复杂、不同分辨率且低收缩、高陶瓷产率、良好的力学及介电性能的立体陶瓷构件一体化成型。本发明用于利用直写式3D打印技术制备复相陶瓷。
-
公开(公告)号:CN115180957A
公开(公告)日:2022-10-14
申请号:CN202210812537.2
申请日:2022-07-11
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/622 , C04B35/645 , H01Q1/42
Abstract: 一种具有优异热透波性能的六方氮化硼陶瓷的制备方法,涉及一种六方氮化硼陶瓷的制备方法。为了解决六方氮化硼陶瓷在高温下介电损耗随温度增加异常增加的问题。制备方法:称取h‑BN粉体和硅溶胶溶液,混合均匀后装入钢模具中,进行振荡预压处理,干燥处理将陶瓷干燥坯体放入石墨坩埚中进行气压烧结,获得织构指数为2000~8000的六方氮化硼陶瓷,作为热透波材料使用。本发明六方氮化硼陶瓷的织构指数为2000~8000和具有低缺陷浓度,能够防止高温下六方氮化硼陶瓷透波性能的异常衰减,具有优异的热透波性能。
-
公开(公告)号:CN108640690A
公开(公告)日:2018-10-12
申请号:CN201810785471.6
申请日:2018-07-17
Applicant: 哈尔滨工业大学
IPC: C04B35/5833 , C04B35/645
Abstract: 一种定向传热六方氮化硼/堇青石织构陶瓷及其制备方法,涉及一种织构陶瓷及其制备方法。目的是解决h-BN织构陶瓷在垂直于片层方向和平行于片层方向的热导率相差小的问题。定向传热六方氮化硼/堇青石织构陶瓷按质量分数由h-BN粉体、MgO粉体、纳米Al2O3粉体和熔融石英粉体制备而成。制备:称取原料并将原料混合后进行蒸发干燥和过筛,然后装入石墨模具中预压得到坯体,最后进行热压烧结。本发明通过热压烧结技术制备具有织构特征的六方氮化硼/堇青石织构陶瓷,提高h-BN晶粒定向程度,从而使h-BN陶瓷定向传热,垂直于片层方向上和平行于片层方向上的热导率相差最高为12.2倍。本发明适用于制备织构陶瓷热防护材料。
-
公开(公告)号:CN116947490B
公开(公告)日:2025-01-28
申请号:CN202310946144.5
申请日:2023-07-31
Applicant: 哈尔滨工业大学
IPC: C04B35/515 , C04B35/622 , C04B35/645
Abstract: 本发明提供了一种低温烧结致密块体陶瓷材料及其制备方法,涉及陶瓷材料技术领域。制备方法包括以无机陶瓷粉体和前驱体溶液/粉体为原料,经混合分散后,制得混合粉体,其中,前驱体溶液/粉体占混合粉体的重量百分比为10‑40wt%;将混合粉体在保护气氛下进行低温烧结,得到低温烧结致密块体陶瓷材料。本发明中,前驱体溶液/粉体在高温下发生裂解生成无机非晶陶瓷相,均匀包覆和填充在原有无机陶瓷粉体表面与空隙中,在烧结过程这些无机非晶陶瓷网络结构为原有无机陶瓷粉体颗粒的重排提供了驱动力,进而实现无机陶瓷粉体的低温烧结致密化得到致密的块体陶瓷材料。本发明所制备的块体陶瓷材料具有高的致密度,高的强度和良好的抗氧化性能。
-
-
-
-
-
-
-
-
-