一种确定KDP晶体表面缺陷全塑性域微铣削修复工艺参数的方法

    公开(公告)号:CN116408482A

    公开(公告)日:2023-07-11

    申请号:CN202310616295.4

    申请日:2023-05-29

    Abstract: 本发明一种确定KDP晶体表面缺陷全塑性域微铣削修复工艺参数的方法,涉及光学元件加工领域,为解决现有方法未建立多种铣削方式下的最大未变形切削厚度模型,且并未考虑表面缺陷对未变形切削厚度的影响的问题。包括如下步骤:步骤一、测量KDP晶体表面缺陷的深度;步骤二、选择球头微铣削修复工艺参数;步骤三、分别构建正铣、负铣,顺铣和逆铣四种铣削模式下的最大未变形切削厚度模型并计算;步骤四、调整修复工艺参数,至各个铣削方式的最大未变形铣削厚度均小于脆塑转变临界切削深度;步骤五、确定表面缺陷全塑性域修复工艺参数。本发明以最大未变形切削厚度模型分析结果为基础对KDP晶体全塑性域微铣削修复工艺参数进行确定,可提高修复表面质量。

    一种铝合金表面激光熔覆工艺参数的优化方法

    公开(公告)号:CN116401878A

    公开(公告)日:2023-07-07

    申请号:CN202310386705.0

    申请日:2023-04-12

    Abstract: 本发明提供一种铝合金表面激光熔覆工艺参数的优化方法,涉及激光增材修复技术领域,为解决现有技术针对铝合金表面激光熔覆工艺参数优化的研究不足,得到的熔覆层孔隙率高的问题。本发明首先建立单道熔覆层激光熔覆过程仿真模型,采用稀释率作为单道熔覆层成形效果的评价指标,确定各工艺参数的初始范围;然后,开展单道熔覆层单因素实验,分析单道熔覆层的成型规律,确定多道多层熔覆层工艺参数范围;最后,以工艺参数为待优化参数,熔覆层孔隙率降低为目标开展多道多层熔覆正交实验,确定最低孔隙率的工艺参数组合。本发明方法得到的最优工艺参数组合,在铝合金基材上成功制备出形貌良好、与铝合金基材冶金结合并且具有极低孔隙率的熔覆层。

    一种激光金属增材制造熔融沉积层的微观组织形貌预测方法

    公开(公告)号:CN116213762A

    公开(公告)日:2023-06-06

    申请号:CN202310253702.X

    申请日:2023-03-16

    Abstract: 本发明提供一种激光金属增材制造熔融沉积层的微观组织形貌预测方法,属于属于激光金属增材制造领域,为解决现有方法对于增材制造过程中的数值模拟主要集中在分析熔池附近温度场、应力场和熔体流场,以分析熔池凝固过程和缺陷产生原因,缺少针对增材制造熔融沉积层微观组织形貌和尺寸预测的数值模拟方法。本发明通过构建激光金属增材制造熔融沉积层的几何模型,构建数值模型包括激光热源模型、熔池表面动态追踪模型、相变传热模型与液态金属流动模型,对熔融沉积层熔池瞬态温度场分布截面进行求解,进一步计算形态参数与冷却速率,以预测熔融沉积层微观组织形貌与尺寸。本发明可快速预测不同工艺参数下的熔融沉积层微观组织形貌与尺寸分布。

    一种可分离的仿生蜈蚣机器人及其接合分离方法

    公开(公告)号:CN115520301A

    公开(公告)日:2022-12-27

    申请号:CN202210955685.X

    申请日:2022-08-10

    Abstract: 一种可分离的仿生蜈蚣机器人及其接合分离方法,它涉及仿生机器人领域。本发明解决了现有的仿生蜈蚣机器人存在整体采用固连方式,当有部分损坏时会导致整体不能继续运行,行走适应性不强的问题。本发明的蜈蚣头模块与蜈蚣尾模块之间由前至后依次设置有N个单体,每相邻两个单体之间、单体与蜈蚣头模块之间以及单体与蜈蚣尾模块之间均通过一个分离模块可拆卸连接,每个分离模块包括公分离接口和母分离接口,公分离接口前端通过磁力元件与母分离接口后端连接,通过磁极方向转换控制单体与单体、单体与蜈蚣头模块和/或单体与蜈蚣尾模块之间的接合与分离。本发明用于实现多地形适应性行进,在任何时候进行模块分离和合并,形成不同长度的机器人。

    一种紫外光学元件加工表面微区电子缺陷能级确定方法

    公开(公告)号:CN114235822A

    公开(公告)日:2022-03-25

    申请号:CN202111621696.6

    申请日:2021-12-28

    Abstract: 一种紫外光学元件加工表面微区电子缺陷能级确定方法,属于工程光学领域,本发明为解决现有技术中缺乏一种简单、可靠的微区电子缺陷能级确定方法的问题,本发明方法具体按如下步骤进行:步骤一、获取紫外光学元件表面微区微缺陷在不同激发光波长下的稳态荧光光谱,选取荧光强度最高的峰值位置,确定其所处的能级为第一电子缺陷能级;步骤二、根据稳态荧光光谱荧光峰值强度的高低进行排序,强度排第N的荧光峰值则对应第N电子缺陷能级;步骤三、确定导带的荧光峰波段出现荧光信号时的激发光波长,根据该波长对应的单光子能量确定导带的位置;步骤四、紫外光学元件加工表面微区电子缺陷能级电子衰减寿命的确定。

    一种基于三光源显微系统的表面微缺陷定位与识别方法

    公开(公告)号:CN114113112A

    公开(公告)日:2022-03-01

    申请号:CN202111428145.8

    申请日:2021-11-29

    Abstract: 一种基于三光源显微系统的表面微缺陷定位与识别方法,涉及工程光学技术领域,用以解决现有技术对于大口径光学元件表面微缺陷不能准确识别和定位不精确的问题。本发明的技术要点包括:获取元件表面多个缺陷区域的初始位置;对于每个缺陷区域,利用吹尘前后的图像初步排除伪缺陷;对于保留的每个缺陷区域,利用预训练的缺陷预测模型进行预测,二次排除伪缺陷;对于经过二次排除后保留的每个缺陷区域,采用改变物距的自动聚焦方法和基于图像处理的缺陷目标提取方法对缺陷区域的初始位置进行修正,获取多个缺陷区域的精确位置。本发明排除了伪缺陷的干扰,并进一步提升了元件表面缺陷的定位精度,可为后续缺陷修复提供可靠数据支撑。

    一种大口径元件的位姿自动确定方法

    公开(公告)号:CN114111578A

    公开(公告)日:2022-03-01

    申请号:CN202111429789.9

    申请日:2021-11-29

    Abstract: 一种大口径元件的位姿自动确定方法,涉及工程光学技术领域,用以解决由于机床上元件夹具的定位精度有限导致元件位姿不确定的问题。本发明的技术要点包括:对机床上当前位姿的元件采集多个图像,并对多个图像进行处理,获得元件上任意点相对于机床坐标系下其标定位姿的平移误差和偏转误差,其中,平移误差包括X、Y、Z轴平移误差,偏转误差包括X、Y轴偏转误差;根据平移误差和偏转误差计算获得元件的标定位姿。本发明解决了由于夹具定位精度有限造成的元件位姿不确定的问题,获取了元件上的点移动到机床上任意工位的标定坐标,为后续缺陷点的定位和修复提供了准确的位置参考。

Patent Agency Ranking