-
公开(公告)号:CN118506168B
公开(公告)日:2024-10-15
申请号:CN202410954584.X
申请日:2024-07-17
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06T7/13 , G06V10/40 , G06V10/54 , G06V10/776 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明公开一种基于多重特征网络的沉浸式视频质量评价方法及装置,涉及图像处理领域,包括:在沉浸式视频质量评价模型中,通过视频预处理网络对待评价的沉浸式视频包含的多个视点的纹理视频和深度视频进行视点筛选,得到筛选后视点的纹理视频和深度视频,通过时空特征提取网络对筛选后视点的纹理视频和深度视频进行特征提取并计算得到对应视点的纹理视频的质量分数和深度视频的质量分数;通过权重计算网络计算得到筛选后视点的时空轨迹权重,将筛选后视点的时空轨迹权重与对应视点的纹理视频的质量分数和深度视频的质量分数输入质量分数计算模块计算得到沉浸式视频的质量分数。本发明解决现有沉浸式视频质量评价算法效果较差的问题。
-
公开(公告)号:CN118397659A
公开(公告)日:2024-07-26
申请号:CN202410828405.8
申请日:2024-06-25
Applicant: 华侨大学
Abstract: 本发明公开了一种基于全局特征与头肩特征多核融合的行人识别方法及装置,涉及图像识别领域,包括:采用经训练的行人头肩部检测模型对行人图像进行头肩部检测,得到行人头肩部图像;在行人识别模型中,将行人图像和行人头肩部图像分别输入全局特征提取分支和头肩特征提取分支,得到全局特征向量和头肩特征向量并输入多核融合模块进行融合,得到融合特征向量,根据全局特征向量、头肩特征向量和融合特征向量构建损失函数,以训练行人识别模型,得到经训练的行人识别模型;将待识别的行人图像及其对应的行人头肩部图像输入经训练的行人识别模型,得到对应的融合特征向量,再进行行人识别。本发明解决鱼眼摄像机下图像特征差异大、准确度低的问题。
-
公开(公告)号:CN118368483A
公开(公告)日:2024-07-19
申请号:CN202410788949.6
申请日:2024-06-19
Applicant: 华侨大学
IPC: H04N21/44 , G06V20/40 , G06V10/764
Abstract: 本发明公开了一种电网环境下的视频帧间篡改检测方法、装置、设备及介质,方法包括以下步骤:获取包含多个视频的数据集;对每个视频,计算每帧画面的所有行像素的平均亮度值,获得每帧的行亮度序列,并连接所有帧的行亮度序列获得行亮度信号样本;对行亮度信号样本采用去除直流分量和下采样操作,获得预处理后的一维时间序列样本;利用一维时间序列样本训练时间序列异常检测模型;通过序列异常检测模型对待检测的视频进行检测,以输出所述视频的分类结果。本发明无须依赖参考电网频率数据库,也无需对视频中的电网频率信号进行估计,采用神经网络方法学习视频亮度序列的异常特征来检测视频帧间篡改,适用场景多,实用性强。
-
公开(公告)号:CN118196840A
公开(公告)日:2024-06-14
申请号:CN202410610290.5
申请日:2024-05-16
Applicant: 华侨大学
Abstract: 本发明公开了一种基于语义偏好挖掘的行人再辨识方法,涉及人工智能、机器视觉领域,包括:利用预训练的语义分割模型将行人图像处理为语义分割图,将语义分割图空间划分为若干部件语义块,计算不同语义在语义分割图与部件语义块中的比例,根据不同语义的比例对部件语义块分组进行语义对齐,获得各部件语义块分组对应的部件序号;基于部件序号对部件特征分组,利用自注意网络将各部件特征组投影到公共嵌入空间并进行偏好挖掘,继而利用偏好信息对各部件特征组进行自适应聚合,增强行人再辨识准确性。
-
公开(公告)号:CN118196731A
公开(公告)日:2024-06-14
申请号:CN202410605567.5
申请日:2024-05-16
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于通道与空间量子注意力学习的车辆再辨识方法及装置,涉及车辆再辨识领域,包括:利用深度网络从车辆图像中提取车辆的特征映射;设计通道量子注意力学习分支和空间量子注意力学习分支,分别对残差模块输出的特征映射学习通道量子注意力掩码和空间量子注意力掩码,并将两种注意力掩码融合为通道‑空间复合量子注意力掩码,用于增强车辆的特征映射,使深度网络能够更全面捕捉特征映射中的重要特征。本发明利用量子叠加与纠缠特性实现车辆注意力学习,能够提高特征学习效果,改善车辆再辨识的准确率,解决了传统机器学习模型难以学习这些复杂的非线性关系的问题。
-
公开(公告)号:CN113554084B
公开(公告)日:2024-03-01
申请号:CN202110806449.7
申请日:2021-07-16
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司 , 星宸科技股份有限公司
IPC: G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/082
Abstract: 本发明实例公开了一种基于剪枝和轻量卷积的车辆再辨识模型压缩方法及系统,对待压缩的车辆再辨识模型的骨干网络进行预训练,对预训练完毕的骨干网络进行剪枝,并通过重训练恢复精度,对车辆再辨识模型中特征金字塔模块进行轻量化卷积设计,将紧凑的骨干网络与轻量化的特征金字塔模块结合,骨干网络提取特征后,特征金字塔模块进行特征融合,得到基于特征金字塔联合表示的轻量化车辆再辨识模型。本发明以复杂高性能的车辆再辨识模型作为输入模型,其骨干网络中重要性较低的卷积核被自动选择和剪枝,并改进其特征金字塔模块中的卷积方式,有效降低参数量和计算量,产生精度相当但较为紧凑的模型。
-
公开(公告)号:CN117196960A
公开(公告)日:2023-12-08
申请号:CN202311475299.1
申请日:2023-11-08
Applicant: 华侨大学
IPC: G06T3/40 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/80
Abstract: 本发明公开了一种全尺度特征细化轻量级图像超分辨率方法及装置,涉及图像处理领域,该方法包括:构建全尺度特征细化轻量级图像超分辨率模型并训练,得到经训练的全尺度特征细化轻量级图像超分辨率模型,将低分辨率图像输入经训练的全尺度特征细化轻量级图像超分辨率模型,先经过第一卷积层得到第一特征图,第一特征图经过串联的K个特征蒸馏提取模块,每一个特征蒸馏提取模块的输出均传送至第二卷积层,并经过第三卷积层,得到第二特征图,第二特征图与第一特征图相加,得到最终特征图,最终特征图输入上采样模块,重建得到高分辨率图像,解决原有超分辨率模型提取的特征信息过于单一的问题,通过蒸馏剔除冗余特征,使模型更加轻量化。
-
公开(公告)号:CN117196959A
公开(公告)日:2023-12-08
申请号:CN202311475294.9
申请日:2023-11-08
Applicant: 华侨大学
IPC: G06T3/40 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于自注意力的红外图像超分辨率方法、装置及可读介质,涉及图像处理领域,包括:构建基于自注意力的轻量级红外图像超分辨率模型并训练,得到经训练的轻量级红外图像超分辨率模型;将待重建的低分辨率红外图像输入经训练的轻量级红外图像超分辨率模型,该模型包括3×3卷积层、轻量级Transformer与CNN骨干、高效细节自注意力模块和图像重建模块,待重建的低分辨率红外图像输入3×3卷积层,得到第一特征,再依次经过轻量级Transformer与CNN骨干和高效细节自注意力模块,且高效细节自注意力模块以共享参数的方式循环n次,得到第二特征,将第一特征和第二特征进行残差连接后输入图像重建模块,输出高分辨率红外图像,解决参数量冗余、性能差等问题。
-
公开(公告)号:CN117036416A
公开(公告)日:2023-11-10
申请号:CN202311082425.7
申请日:2023-08-25
Applicant: 华侨大学
Abstract: 本发明公开了一种基于深层交互注意力机制的目标跟踪方法、装置及可读介质,该方法包括:获取视频序列,并分别从视频序列和第一帧中提取当前帧和模板帧;构建目标跟踪模型并训练,目标跟踪模型包括特征提取模块、Sim模块、判别定位模块和通道微调模块;将当前帧和模板帧输入经训练的目标跟踪模型,通过特征提取模块提取若干特征,将若干特征中的其中一个特征和模板帧输入Sim模块,得到前景特征图和前景概率特征图,将若干特征中的其中一个特征和模板帧输入判别定位模块,得到定位特征图,将前景特征图、前景概率特征图和定位特征图进行融合,得到混合特征图,将若干特征中的其余特征与混合特征图输入通道微调模块,得到目标跟踪结果,提高鲁棒性。
-
公开(公告)号:CN116405683A
公开(公告)日:2023-07-07
申请号:CN202310449794.9
申请日:2023-04-24
Applicant: 华侨大学
IPC: H04N19/147 , H04N19/176 , H04N19/149 , H04N19/11 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于3D‑HEVC深度图模式预测的深度图编码方法、装置及可读介质,通过构建基于卷积网络的DMM模式预测模型并进行训练,得到经训练的DMM模式预测模型;将待编码深度图序列划分得到第一级别尺寸下的若干个当前待编码块,将当前待编码块输入经训练的DMM模式预测模型,输出的网络预测值为当前待编码块的编码过程中是否需要将DMM模式加入对应尺寸的全率失真代价计算列表的标签值;采用3D‑HEVC编码器对当前待编码块进行编码,在编码过程中调用网络预测值,并确定当前待编码块在对应尺寸下的最佳模式;以判断是否需要将DMM模式加入对应尺寸的全率失真代价计算列表,可避免直接将DMM模式加入全率失真代价计算列表,导致对DMM模式冗余的率失真计算过程。
-
-
-
-
-
-
-
-
-